Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 12: 613808, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33692826

RESUMO

The SALL2 transcription factor, an evolutionarily conserved gene through vertebrates, is involved in normal development and neuronal differentiation. In disease, SALL2 is associated with eye, kidney, and brain disorders, but mainly is related to cancer. Some studies support a tumor suppressor role and others an oncogenic role for SALL2, which seems to depend on the cancer type. An additional consideration is tissue-dependent expression of different SALL2 isoforms. Human and mouse SALL2 gene loci contain two promoters, each controlling the expression of a different protein isoform (E1 and E1A). Also, several improvements on the human genome assembly and gene annotation through next-generation sequencing technologies reveal correction and annotation of additional isoforms, obscuring dissection of SALL2 isoform-specific transcriptional targets and functions. We here integrated current data of normal/tumor gene expression databases along with ChIP-seq binding profiles to analyze SALL2 isoforms expression distribution and infer isoform-specific SALL2 targets. We found that the canonical SALL2 E1 isoform is one of the lowest expressed, while the E1A isoform is highly predominant across cell types. To dissect SALL2 isoform-specific targets, we analyzed publicly available ChIP-seq data from Glioblastoma tumor-propagating cells and in-house ChIP-seq datasets performed in SALL2 wild-type and E1A isoform knockout HEK293 cells. Another available ChIP-seq data in HEK293 cells (ENCODE Consortium Phase III) overexpressing a non-canonical SALL2 isoform (short_E1A) was also analyzed. Regardless of cell type, our analysis indicates that the SALL2 long E1 and E1A isoforms, but not short_E1A, are mostly contributing to transcriptional control, and reveals a highly conserved network of brain-specific transcription factors (i.e., SALL3, POU3F2, and NPAS3). Our data integration identified a conserved molecular network in which SALL2 regulates genes associated with neural function, cell differentiation, development, and cell adhesion between others. Also, we identified PODXL as a gene that is likely regulated by SALL2 across tissues. Our study encourages the validation of publicly available ChIP-seq datasets to assess a specific gene/isoform's transcriptional targets. The knowledge of SALL2 isoforms expression and function in different tissue contexts is relevant to understanding its role in disease.

2.
Artigo em Inglês | MEDLINE | ID: mdl-29778644

RESUMO

SALL2 is a transcription factor involved in development and disease. Deregulation of SALL2 has been associated with cancer, suggesting that it plays a role in the disease. However, how SALL2 is regulated and why is deregulated in cancer remain poorly understood. We previously showed that the p53 tumor suppressor represses SALL2 under acute genotoxic stress. Here, we investigated the effect of Histone Deacetylase Inhibitor (HDACi) Trichostatin A (TSA), and involvement of Sp1 on expression and function of SALL2 in Jurkat T cells. We show that SALL2 mRNA and protein levels were enhanced under TSA treatment. Both, TSA and ectopic expression of Sp1 transactivated the SALL2 P2 promoter. This transactivation effect was blocked by the Sp1-binding inhibitor mithramycin A. Sp1 bound in vitro and in vivo to the proximal region of the P2 promoter. TSA induced Sp1 binding to the P2 promoter, which correlated with dynamic changes on H4 acetylation and concomitant recruitment of p300 or HDAC1 in a mutually exclusive manner. Our results suggest that TSA-induced Sp1-Lys703 acetylation contributes to the transcriptional activation of the P2 promoter. Finally, using a CRISPR/Cas9 SALL2-KO Jurkat-T cell model and gain of function experiments, we demonstrated that SALL2 upregulation is required for TSA-mediated cell death. Thus, our study identified Sp1 as a novel transcriptional regulator of SALL2, and proposes a novel epigenetic mechanism for SALL2 regulation in Jurkat-T cells. Altogether, our data support SALL2 function as a tumor suppressor, and SALL2 involvement in cell death response to HDACi.

3.
Mol Oncol ; 12(7): 1026-1046, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29689621

RESUMO

SALL2 is a poorly characterized transcription factor that belongs to the Spalt-like family involved in development. Mutations on SALL2 have been associated with ocular coloboma and cancer. In cancers, SALL2 is deregulated and is proposed as a tumor suppressor in ovarian cancer. SALL2 has been implicated in stemness, cell death, proliferation, and quiescence. However, mechanisms underlying roles of SALL2 related to cancer remain largely unknown. Here, we investigated the role of SALL2 in cell proliferation using mouse embryo fibroblasts (MEFs) derived from Sall2-/- mice. Compared to Sall2+/+ MEFs, Sall2-/- MEFs exhibit enhanced cell proliferation and faster postmitotic progression through G1 and S phases. Accordingly, Sall2-/- MEFs exhibit higher mRNA and protein levels of cyclins D1 and E1. Chromatin immunoprecipitation and promoter reporter assays showed that SALL2 binds and represses CCND1 and CCNE1 promoters, identifying a novel mechanism by which SALL2 may control cell cycle. In addition, the analysis of tissues from Sall2+/+ and Sall2-/- mice confirmed the inverse correlation between expression of SALL2 and G1-S cyclins. Consistent with an antiproliferative function of SALL2, immortalized Sall2-/- MEFs showed enhanced growth rate, foci formation, and anchorage-independent growth, confirming tumor suppressor properties for SALL2. Finally, cancer data analyses show negative correlations between SALL2 and G1-S cyclins' mRNA levels in several cancers. Altogether, our results demonstrated that SALL2 is a negative regulator of cell proliferation, an effect mediated in part by repression of G1-S cyclins' expression. Our results have implications for the understanding and significance of SALL2 role under physiological and pathological conditions.


Assuntos
Ciclo Celular/genética , Ciclina D1/genética , Ciclina E/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias/genética , Neoplasias/patologia , Proteínas Repressoras/metabolismo , Animais , Proliferação de Células , Transformação Celular Neoplásica/patologia , Ciclina D1/metabolismo , Ciclina E/metabolismo , Proteínas de Ligação a DNA , Fibroblastos/metabolismo , Fase G1 , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Camundongos Knockout , Modelos Biológicos , Fenótipo , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fase S , Fatores de Transcrição , Transcrição Gênica
4.
Carcinogenesis ; 38(7): 680-690, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28430874

RESUMO

SALL2, also known as Spalt-like transcription factor 2, is a member of the SALL family of transcription factors involved in development and conserved through evolution. Since its identification in 1996, findings indicate that SALL2 plays a role in neurogenesis, neuronal differentiation and eye development. Consistently, SALL2 deficiency associates with neural tube defects and coloboma, a congenital eye disease. Relevant to cancer, clinical studies indicate that SALL2 is deregulated in various cancers and is a specific biomarker for Synovial Sarcoma. However, the significance of SALL2 deregulation in this disease is controversial. Here, we present and discuss all available information about SALL2 since its discovery, including isoforms, regulation, targets and functions. We specifically discuss the role of SALL2 in the regulation of cell proliferation and survival within the context of the identified target genes, its interaction with viral oncogenes, and its association with the TP53 tumor suppressor and MYC oncogene. Special attention is given to p53-independent SALL2 regulation of pro-apoptotic genes BAX and PMAIP1, and the implication of these findings on the apoptotic response of cancer cells to therapy. Understanding SALL2 function and the molecular mechanisms governing its expression and activity is critical to comprehend why and how SALL2 could contribute to disease. This knowledge will open new perspectives for the development of molecular targeted approaches in disease.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias/genética , Fatores de Transcrição/genética , Apoptose/genética , Biomarcadores Tumorais/biossíntese , Proteínas de Ligação a DNA , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Fatores de Transcrição/biossíntese , Proteína Supressora de Tumor p53/genética , Proteína X Associada a bcl-2/genética
5.
J Cell Biochem ; 114(8): 1779-88, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23444173

RESUMO

In amphibians, sperm histone transition post-fertilization during male pronucleus formation is commanded by histone chaperone Nucleoplasmin (NPM). Here, we report the first studies to analyze the participation of a Nucleoplasmin-like protein on male chromatin remodeling in sea urchins. In this report, we present the molecular characterization of a nucleoplasmin-like protein that is present in non fertilized eggs and early zygotes in sea urchin specie Tetrapygus niger. This protein, named MP62 can interact with sperm histones in vitro. By male chromatin decondensation assays and immunodepletion experiments in vitro, we have demonstrated that this protein is responsible for sperm nucleosome disorganization. Furthermore, as amphibian nucleoplasmin MP62 is phosphorylated in vivo immediately post-fertilization and this phosphorylation is dependent on CDK-cyclin activities found after fertilization. As we shown, olomoucine and roscovitine inhibits male nucleosome decondensation, sperm histone replacement in vitro and MP62 phosphorylation in vivo. This is the first report of a nucleoplasmin-like activity in sea urchins participating during male pronucleus formation post-fecundation.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Nucleoplasminas/metabolismo , Ouriços-do-Mar/metabolismo , Espermatozoides/metabolismo , Animais , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Histonas/metabolismo , Cinetina/farmacologia , Masculino , Inibidores de Proteínas Quinases/farmacologia , Purinas/farmacologia , Roscovitina , Ouriços-do-Mar/citologia , Espermatozoides/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...