Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fish Biol ; 97(5): 1296-1305, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32710475

RESUMO

Atlantic bluefin tuna is an iconic scombrid species with a high commercial and ecological value. Despite their importance, many physiological aspects, especially during the larval stages, are still unknown. Metabolic rates are one of the understudied aspects in scombrid larvae, likely due to challenges associated to larval handling before and during respirometry trials. Gaining reliable estimates of metabolic rates is essential to understand how larvae balance their high growth needs and activity and other physiological functions, which can be very useful for fisheries ecology and aquaculture. This is the first study to (a) estimate the relationship between routine metabolic rate (RMR) and larval dry weight (DW) (mass scaling exponent) at a constant temperature of 26°C, (b) measure the RMR under light and darkness and (c) test whether the interindividual differences in the RMR are related to larval nutritional status (RNA/DNA and DNA/DW). The RMR scaled nearly isometrically with body size (b = 0.99, 0.60-31.56 mg DW) in contrast to the allometric relationship observed in most fish larvae (average b = 0.87). The results show no significant differences in larval RMR under light and darkness, suggesting similar larval activity levels in both conditions. The size explained most of the variability in RMR (97%), and nutritional condition was unrelated to the interindividual differences in routine metabolism. This is the first study to report the metabolic rates of Atlantic bluefin tuna larvae and discuss the challenges of performing bioenergetic studies with early life stages of scombrids.


Assuntos
Metabolismo Energético , Atum/metabolismo , Animais , Oceano Atlântico , Pesqueiros , Estado Nutricional , Temperatura
2.
Mar Pollut Bull ; 146: 827-830, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31426224

RESUMO

The invasive Crepidula fornicata caused major problems along the European Atlantic coast, especially in France and Netherlands where high densities leads on changes in the habitat, disturb native marine wildlife as well as it originates competition for space and food. Despite its dangerous invasive nature, regular monitoring to alert about its presence in risk areas, like the south Bay of Biscay (Spain and south France), is not done yet. Here, we developed a species-specific marker to detect the presence of C. fornicata in environmental samples (eDNA) of seawater. The novel C. fornicata specific primers amplified a region of 239 bp within the COI gen. We employed this tool to check its presence in 6 estuaries of the Cantabrian Sea, an area comprised between the Spanish and French limits of the previously reported presence of this limpet in the south Bay of Biscay. The presence of C. fornicata was confirmed in A Coruña (Galicia, Spain), Eo and Villaviciosa estuaries (Asturias, Spain) while it was not detected in Santander, Bilbao (Spain), and Bayonne (France). This new method to detect C. fornicata could be easily implemented in regular monitoring to prevent and manage future invasions of this species.


Assuntos
Monitoramento Ambiental/métodos , Gastrópodes/genética , Marcadores Genéticos , Reação em Cadeia da Polimerase/métodos , Animais , Primers do DNA , Ecossistema , França , Espécies Introduzidas , Países Baixos , Água do Mar , Espanha , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...