Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Res Food Sci ; 4: 141-149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33778774

RESUMO

There is emerging evidence on the importance of food-derived bioactive peptides to promote human health. Compared with animal derived proteins, plant proteins, in particular oilseed proteins, are considered as affordable and sustainable sources of bioactive peptides. Based on our previous bioinformatic analysis, five oilseed proteins (flaxseed, rapeseed, sunflower, sesame and soybean) were enzymatically hydrolysed using alcalase and pepsin (pH 1.3 and pH 2.1). Further, low molecular weight (Mw â€‹< â€‹3 â€‹kDa) fractions were generated using ultrafiltration. The protein hydrolysates and their low Mw fractions were evaluated for their in vitro antioxidant, antihypertensive and antidiabetic capabilities, in comparison with samples obtained from two dairy proteins (whey and casein). Apart from dipeptidyl-peptidase IV inhibition, significantly stronger bioactivities were detected for the low Mw fractions. In partial agreement with in silico predictions, most oilseed hydrolysates exerted comparable angiotensin-converting enzyme inhibitory capability to dairy proteins, whilst whey protein was the most promising source of dipeptidyl-peptidase IV inhibitors. Apart from alcalase-treated soybean, dairy proteins were more efficient in releasing antioxidant peptides as compared to oilseed proteins. On the other hand, soybean protein hydrolysates showed the highest α-glucosidase inhibitory activity amongst all protein sources. Overall, there was limited correlation between in silico predictions and in vitro experimental results. Nevertheless, our results indicate that oilseed proteins have potential as bioactive peptide sources, and they might therefore be suitable replacers for dairy proteins as well as good sources for development of functional foods.

2.
Food Funct ; 11(3): 2339-2348, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32118211

RESUMO

The goal of this study was to determine the effect of the carrier material, drying technology and dissolution media during the passage of L. fermentum K73 through a dynamic in vitro digestion system (IViDiS). The carrier materials were (i) culture medium with growing micro-organisms and (ii) culture medium with maltodextrin : sweet whey [0.6 : 0.4]. The carrier materials were dried by spray-drying and freeze-drying to obtain four types of powders. The dissolution media consisted of water and 1% fat milk. The powders were tested using an in vitro dynamic digestion system (IViDiS). The results showed that powders derived from culture medium had the highest protective effect on the viability of L. fermentum K73 in both dissolution media and that survival increased when the powders were tested in milk. The modified Gompertz model was used to model L. fermentum K73 behaviour during the digestion process. The model showed that cells entrapped in culture medium had the longest lag phase and the slowest inactivation rate when evaluated in milk.


Assuntos
Caseínas/farmacologia , Tecnologia de Alimentos , Trato Gastrointestinal/fisiologia , Trânsito Gastrointestinal/fisiologia , Limosilactobacillus fermentum/fisiologia , Soro do Leite , Desidratação , Humanos , Probióticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...