Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 18(1): 152, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31500633

RESUMO

BACKGROUND: The soil bacterium Pseudomonas putida is a promising platform for the production of industrially valuable natural compounds. In the case of isoprenoids, the availability of biosynthetic precursors is a major limiting factor. In P. putida and most other bacteria, these precursors are produced from pyruvate and glyceraldehyde 3-phosphate by the methylerythritol 4-phosphate (MEP) pathway, whereas other bacteria synthesize the same precursors from acetyl-CoA using the unrelated mevalonate (MVA) pathway. RESULTS: Here we explored different strategies to increase the supply of isoprenoid precursors in P. putida cells using lycopene as a read-out. Because we were not aiming at producing high isoprenoid titers but were primarily interested in finding ways to enhance the metabolic flux to isoprenoids, we engineered the well-characterized P. putida strain KT2440 to produce low but detectable levels of lycopene under conditions in which MEP pathway steps were not saturated. Then, we compared lycopene production in cells expressing the Myxococcus xanthus MVA pathway genes or endogenous MEP pathway genes (dxs, dxr, idi) under the control of IPTG-induced and stress-regulated promoters. We also tested a shunt pathway producing isoprenoid precursors from ribulose 5-phosphate using a mutant version of the Escherichia coli ribB gene. CONCLUSIONS: The most successful combination led to a 50-fold increase in lycopene levels, indicating that P. putida can be successfully engineered to substantially increase the supply of metabolic substrates for the production of industrially valuable isoprenoids.


Assuntos
Licopeno/metabolismo , Engenharia Metabólica , Ácido Mevalônico/metabolismo , Pseudomonas putida/metabolismo , Eritritol/análogos & derivados , Eritritol/metabolismo , Gliceraldeído 3-Fosfato/metabolismo , Pseudomonas putida/genética , Fosfatos Açúcares/metabolismo
2.
RNA ; 22(12): 1902-1917, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27777366

RESUMO

In Pseudomonas putida, the Hfq and Crc proteins regulate the expression of many genes in response to nutritional and environmental cues, by binding to mRNAs that bear specific target motifs and inhibiting their translation. The effect of these two proteins is antagonized by the CrcZ and CrcY small RNAs (sRNAs), the levels of which vary greatly according to growth conditions. The crcZ and crcY genes are transcribed from promoters PcrcZ and PcrcY, respectively, a process that relies on the CbrB transcriptional activator and the RpoN σ factor. Here we show that crcZ can also be transcribed from the promoter of the immediate upstream gene, cbrB, a weak constitutive promoter. The cbrB-crcZ transcript was processed to render a sRNA very similar in size to the CrcZ produced from promoter PcrcZ The processed sRNA, termed CrcZ*, was able to antagonize Hfq/Crc because, when provided in trans, it relieved the deregulated Hfq/Crc-dependent hyperrepressing phenotype of a ΔcrcZΔcrcY strain. CrcZ* may help in attaining basal levels of CrcZ/CrcZ* that are sufficient to protect the cell from an excessive Hfq/Crc-dependent repression. Since a functional sRNA can be produced from PcrcZ, an inducible strong promoter, or by cleavage of the cbrB-crcZ mRNA, crcZ can be considered a 3'-untranslated region of the cbrB-crcZ mRNA. In the absence of Hfq, the processed form of CrcZ was not observed. In addition, we show that Crc and Hfq increase CrcZ stability, which supports the idea that these proteins can form a complex with CrcZ and protect it from degradation by RNases.


Assuntos
Proteínas de Bactérias/genética , Pseudomonas putida/genética , Processamento Pós-Transcricional do RNA , RNA Bacteriano/metabolismo , Transcrição Gênica , Regiões Promotoras Genéticas , RNA Mensageiro/genética
3.
Environ Microbiol ; 17(1): 105-18, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24803210

RESUMO

The Crc protein is a global regulator that has a key role in catabolite repression and optimization of metabolism in Pseudomonads. Crc inhibits gene expression post-transcriptionally, preventing translation of mRNAs bearing an AAnAAnAA motif [the catabolite activity (CA) motif] close to the translation start site. Although Crc was initially believed to bind RNA by itself, this idea was recently challenged by results suggesting that a protein co-purifying with Crc, presumably the Hfq protein, could account for the detected RNA-binding activity. Hfq is an abundant protein that has a central role in post-transcriptional gene regulation. Herein, we show that the Pseudomonas putida Hfq protein can recognize the CA motifs of RNAs through its distal face and that Crc facilitates formation of a more stable complex at these targets. Crc was unable to bind RNA in the absence of Hfq. However, pull-down assays showed that Crc and Hfq can form a co-complex with RNA containing a CA motif in vitro. Inactivation of the hfq or the crc gene impaired catabolite repression to a similar extent. We propose that Crc and Hfq cooperate in catabolite repression, probably through forming a stable co-complex with RNAs containing CA motifs to result in inhibition of translation initiation.


Assuntos
Proteínas de Bactérias/metabolismo , Repressão Catabólica/genética , Fator Proteico 1 do Hospedeiro/metabolismo , Pseudomonas putida/genética , RNA Bacteriano/metabolismo , Proteínas Repressoras/metabolismo , Regulação Bacteriana da Expressão Gênica , Motivos de Nucleotídeos , Pseudomonas putida/metabolismo , RNA Bacteriano/química , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/metabolismo
4.
Environ Microbiol ; 15(1): 227-41, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22925411

RESUMO

Metabolically versatile bacteria usually perceive aromatic compounds and hydrocarbons as non-preferred carbon sources, and their assimilation is inhibited if more preferable substrates are available. This is achieved via catabolite repression. In Pseudomonas putida, the expression of the genes allowing the assimilation of benzoate and n-alkanes is strongly inhibited by catabolite repression, a process controlled by the translational repressor Crc. Crc binds to and inhibits the translation of benR and alkS mRNAs, which encode the transcriptional activators that induce the expression of the benzoate and alkane degradation genes respectively. However, sequences similar to those recognized by Crc in benR and alkS mRNAs exist as well in the translation initiation regions of the mRNA of several structural genes of the benzoate and alkane pathways, which suggests that Crc may also regulate their translation. The present results show that some of these sites are functional, and that Crc inhibits the induction of both pathways by limiting not only the translation of their transcriptional activators, but also that of genes coding for the first enzyme in each pathway. Crc may also inhibit the translation of a gene involved in benzoate uptake. This multi-tier approach probably ensures the rapid regulation of pathway genes, minimizing the assimilation of non-preferred substrates when better options are available. A survey of possible Crc sites in the mRNAs of genes associated with other catabolic pathways suggested that targeting substrate uptake, pathway induction and/or pathway enzymes may be a common strategy to control the assimilation of non-preferred compounds.


Assuntos
Alcanos/metabolismo , Proteínas de Bactérias/metabolismo , Benzoatos/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas putida/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Metabolismo/genética , Ligação Proteica , Pseudomonas putida/genética , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...