Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38138078

RESUMO

Mycobacterium tuberculosis is the main causal agent of pulmonary tuberculosis (TB); the treatment of this disease is long and involves a mix of at least four different antibiotics that frequently lead to abandonment, favoring the surge of drug-resistant mycobacteria (MDR-TB), whose treatment becomes more aggressive, being longer and more toxic. Thus, the search for novel strategies for treatment that improves time or efficiency is of relevance. In this work, we used a murine model of pulmonary TB produced by the MDR-TB strain to test the efficiency of gene therapy with adenoviral vectors codifying TNF (AdTNF), a pro-inflammatory cytokine that has protective functions in TB by inducing apoptosis, granuloma formation and expression of other Th1-like cytokines. When compared to the control group that received an adenoviral vector that codifies for the green fluorescent protein (AdGFP), a single dose of AdTNF at the chronic active stage of the disease produced total survival, decreasing bacterial load and tissue damage (pneumonia), which correlated with an increase in cells expressing IFN-γ, iNOS and TNF in pneumonic areas and larger granulomas that efficiently contain and eliminate mycobacteria. Second-line antibiotic treatment against MDR-TB plus AdTNF gene therapy reduced bacterial load faster within a week of treatment compared to empty vector plus antibiotics or antibiotics alone, suggesting that AdTNF is a new potential type of treatment against MDR-TB that can shorten second-line chemotherapy but which requires further experimentation in other animal models (non-human primates) that develop a more similar disease to human pulmonary TB.

2.
Front Cell Infect Microbiol ; 13: 1105872, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284503

RESUMO

Tuberculosis (TB) caused by the complex Mycobacterium tuberculosis (Mtb) is the main cause of death by a single bacterial agent. Last year, TB was the second leading infectious killer after SARS-CoV-2. Nevertheless, many biological and immunological aspects of TB are not completely elucidated, such as the complex process of immunoregulation mediated by regulatory T cells (Treg cells) and the enzymes indoleamine 2,3-dioxygenase (IDO) and heme oxygenase 1 (HO-1). In this study, the contribution of these immunoregulatory factors was compared in mice infected with Mtb strains with different levels of virulence. First Balb/c mice were infected by intratracheal route, with a high dose of mild virulence reference strain H37Rv or with a highly virulent clinical isolate (strain 5186). In the lungs of infected mice, the kinetics of Treg cells during the infection were determined by cytofluorometry and the expression of IDO and HO-1 by RT-PCR and immunohistochemistry. Then, the contribution of immune-regulation mediated by Treg cells, IDO and HO-1, was evaluated by treating infected animals with specific cytotoxic monoclonal antibodies for Treg cells depletion anti-CD25 (PC61 clone) or by blocking IDO and HO-1 activity using specific inhibitors (1-methyl-D,L-tryptophan or zinc protoporphyrin-IX, respectively). Mice infected with the mild virulent strain showed a progressive increment of Treg cells, showing this highest number at the beginning of the late phase of the infection (28 days), the same trend was observed in the expression of both enzymes being macrophages the cells that showed the highest immunostaining. Animals infected with the highly virulent strain showed lower survival (34 days) and higher amounts of Treg cells, as well as higher expression of IDO and HO-1 one week before. In comparison with non-treated animals, mice infected with strain H37Rv with depletion of Treg cells or treated with the enzymes blockers during late infection showed a significant decrease of bacilli loads, higher expression of IFN-g and lower IL-4 but with a similar extension of inflammatory lung consolidation determined by automated morphometry. In contrast, the depletion of Treg cells in infected mice with the highly virulent strain 5186 produced diffuse alveolar damage that was similar to severe acute viral pneumonia, lesser survival and increase of bacillary loads, while blocking of both IDO and HO-1 produced high bacillary loads and extensive pneumonia with necrosis. Thus, it seems that Treg cells, IDO and HO-1 activities are detrimental during late pulmonary TB induced by mild virulence Mtb, probably because these factors decrease immune protection mediated by the Th1 response. In contrast, Treg cells, IDO and HO-1 are beneficial when the infection is produced by a highly virulent strain, by regulation of excessive inflammation that produced alveolar damage, pulmonary necrosis, acute respiratory insufficiency, and rapid death.


Assuntos
COVID-19 , Mycobacterium tuberculosis , Tuberculose Pulmonar , Camundongos , Animais , Heme Oxigenase-1 , Mycobacterium tuberculosis/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Linfócitos T Reguladores , Virulência , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Pulmão/microbiologia , Necrose/metabolismo
3.
Hum Gene Ther ; 33(19-20): 1037-1051, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35615876

RESUMO

Tuberculosis (TB) has been for many years a major public health problem since treatment is long and sometimes ineffective favoring the increase of multidrug-resistant mycobacteria (MDR-TB). Gene therapy is a novel and effective tool to regulate immune responses. In this study we evaluated the therapeutic effect of an adenoviral vector codifying osteopontin (AdOPN), a molecule known for their roles to favor Th1 and Th17 type-cytokine expression which are crucial in TB containment. A single dose of AdOPN administration in BALB/c mice suffering late progressive pulmonary MDR-TB produced significant lower bacterial load and pneumonia, due to higher expression of IFN-γ, IL-12, and IL-17 in coexistence with increase of granulomas in number and size, resulting in higher survival, in contrast with mice treated with the control adenovirus that codify the green fluorescent protein (AdGFP). Combined therapy of AdOPN with a regimen of second line antibiotics produced a better control of bacterial load in lung during the first days of treatment, suggesting that AdOPN can shorten chemotherapy. Taken together, gene therapy with AdOPN leads to higher immune responses against TB infection, resulting in a new potential treatment against pulmonary TB that can co-adjuvant chemotherapy.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose Pulmonar , Camundongos , Animais , Interleucina-17/genética , Mycobacterium tuberculosis/genética , Osteopontina/genética , Osteopontina/farmacologia , Osteopontina/uso terapêutico , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Tuberculose Resistente a Múltiplos Medicamentos/terapia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Pulmonar/terapia , Tuberculose Pulmonar/tratamento farmacológico , Camundongos Endogâmicos BALB C , Pulmão , Terapia Genética/métodos , Interleucina-12/genética , Interleucina-12/farmacologia , Interleucina-12/uso terapêutico , Citocinas/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
4.
J Leukoc Biol ; 110(5): 951-963, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33682193

RESUMO

As components of the innate immune response, antimicrobial peptides (AMPs) efficiently contribute to infection control and maintenance of a latent state in pulmonary tuberculosis (TB). As a therapeutic strategy, the administration of recombinant AMPs could be limited by enzymatic degradation and high production costs. Likewise, strategies based on the induction of AMPs have generated controversial results. In this study, 2 recombinant type-5 adenoviruses (Ad) expressing the human ß-defensin 3 (HßD3) or cathelicidin (LL37) were assessed in a murine pulmonary TB model. Mice infected with either a high dose of a drug-sensitive (H37Rv) or a multidrug-resistant (MDR) strain of Mycobacterium tuberculosis (Mtb) were treated with a single administration of AdHßD3, AdLL37, AdGFP (control vector expressing a green fluorescent protein), or saline solution (SS). Lungs were obtained to determine the bacterial burden, histologic damage, and cytokine expression at different time points. Mice treated with AdHßD3 or AdLL37 showed significantly lower bacterial load and pneumonia, and higher proinflammatory cytokine expression than the control groups AdGFP and SS. A synergistic therapeutic effect could be observed when first- or second-line antibiotics (ABs) were administered with adenoviral therapy in animals infected with H37Rv or MDR strains, respectively. Adenovirus-delivered AMP's administration constitutes a promising adjuvant therapy for current anti-TB drugs by enhancing a protective immune response and potentially reducing current AB regimes' duration.


Assuntos
Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Antituberculosos/administração & dosagem , Tuberculose Pulmonar/patologia , beta-Defensinas/administração & dosagem , Adenoviridae , Animais , Quimioterapia Combinada/métodos , Vetores Genéticos , Humanos , Camundongos , Tuberculose Resistente a Múltiplos Medicamentos/patologia , Catelicidinas
5.
J Immunol Res ; 2020: 2965697, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411792

RESUMO

Tuberculosis is still a global public health problem, with an estimated 10 million new cases and 1.6 million deaths in 2017. Of all humans infected with M. tuberculosis, only 10-15% will develop active tuberculosis disease during their lifetime, and data suggest that along with environmental factors, genetic factors influence susceptibility to develop active disease. Toll-like receptors (TLRs) are pattern recognition receptors that play a central role in the initiation and shaping of adaptive immune responses, and several TLRs have been shown to recognize mycobacterial components. In this work, we performed a case-control study to determine if common single nucleotide polymorphisms (SNPs) in genes encoding TLRs 1, 2, 4, 6, and 10 are associated with susceptibility to develop active tuberculosis in population from the state of Veracruz, Mexico. The study included 279 cases and 569 controls. The results show that the frequency of two SNPs in TLR4 was significantly higher in controls than in tuberculosis patients. The minor allele (G) of rs4986790 in TLR4 (D299G) decreased the risk of active tuberculosis in the allelic (A vs. G, OR = 0.31, 95%CI = 0.09-0.81, p = 0.01) and in the dominant genetic model (AA vs. GG+AG, OR = 0.26, 95%CI = 0.09-0.77, p = 0.02). Similarly, the minor allele (T) of rs4986791 in TLR4 (T399I) decreased the risk of active disease in the allelic model (C vs. T, OR = 0.29, 95%CI = 0.10-0.90, p = 0.03). We did not find an association of SNPs in TLR1 (N248S), TLR2 (R753Q), TLR6 (S249P), and TLR10 (A153S and V298I) with tuberculosis disease. These results suggest that in this population, genetic variants of TLR4 affect the susceptibility for suffering active tuberculosis disease.


Assuntos
Predisposição Genética para Doença , Mycobacterium tuberculosis/imunologia , Receptor 4 Toll-Like/genética , Tuberculose Pulmonar/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Estudos de Casos e Controles , Feminino , Humanos , Desequilíbrio de Ligação , Masculino , México , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Fatores de Proteção , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Adulto Jovem
6.
Pathog Dis ; 74(7)2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27604468

RESUMO

Mycobacterium tuberculosis (Mtb) latent infection can lead to reactivation. The design of new strategies to prevent it is an important subject. B6D2F1 mice were infected intratracheally with a low dose of Mtb H37Rv to induce chronic infection. After 7 months, mice were treated with one dose of recombinant adenoviruses encoding TNFα, ß defensin-3 and LL37. Immunosupression was induced 1 month later with corticosterone. In comparison with the control group, mice treated with adenoviruses showed significantly less bacterial load and pneumonia, the adenoviruses encoding TNFα and LL37 being the most efficient. Gene therapy based in a proinflammatory cytokine or antimicrobial peptides is a potentially useful system to prevent reactivation of latent tuberculosis.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Citocinas/genética , Terapia Genética , Mediadores da Inflamação , Tuberculose Latente/genética , Tuberculose Latente/microbiologia , Mycobacterium tuberculosis/fisiologia , Adenoviridae/genética , Animais , Biomarcadores , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Expressão Gênica , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , Tuberculose Latente/patologia , Tuberculose Latente/terapia , Camundongos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...