Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(6)2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37371506

RESUMO

This Review emphasizes the impact of APOE4-the most significant genetic risk factor for Alzheimer's disease (AD)-on peripheral and neural effects starting in childhood. We discuss major mechanistic players associated with the APOE alleles' effects in humans to understand their impact from conception through all life stages and the importance of detrimental, synergistic environmental exposures. APOE4 influences AD pathogenesis, and exposure to fine particulate matter (PM2.5), manufactured nanoparticles (NPs), and ultrafine particles (UFPs) associated with combustion and friction processes appear to be major contributors to cerebrovascular dysfunction, neuroinflammation, and oxidative stress. In the context of outdoor and indoor PM pollution burden-as well as Fe, Ti, and Al alloys; Hg, Cu, Ca, Sn, and Si UFPs/NPs-in placenta and fetal brain tissues, urban APOE3 and APOE4 carriers are developing AD biological disease hallmarks (hyperphosphorylated-tau (P-tau) and amyloid beta 42 plaques (Aß42)). Strikingly, for Metropolitan Mexico City (MMC) young residents ≤ 40 y, APOE4 carriers have 4.92 times higher suicide odds and 23.6 times higher odds of reaching Braak NFT V stage versus APOE4 non-carriers. The National Institute on Aging and Alzheimer's Association (NIA-AA) framework could serve to test the hypothesis that UFPs and NPs are key players for oxidative stress, neuroinflammation, protein aggregation and misfolding, faulty complex protein quality control, and early damage to cell membranes and organelles of neural and vascular cells. Noninvasive biomarkers indicative of the P-tau and Aß42 abnormal protein deposits are needed across the disease continuum starting in childhood. Among the 21.8 million MMC residents, we have potentially 4 million APOE4 carriers at accelerated AD progression. These APOE4 individuals are prime candidates for early neuroprotective interventional trials. APOE4 is key in the development of AD evolving from childhood in highly polluted urban centers dominated by anthropogenic and industrial sources of pollution. APOE4 subjects are at higher early risk of AD development, and neuroprotection ought to be implemented. Effective reductions of PM2.5, UFP, and NP emissions from all sources are urgently needed. Alzheimer's Disease prevention ought to be at the core of the public health response and physicians-scientist minority research be supported.


Assuntos
Poluição do Ar , Doença de Alzheimer , Apolipoproteína E4 , Material Particulado , Suicídio , Humanos , Poluição do Ar/efeitos adversos , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides , Apolipoproteína E4/genética , Encéfalo/patologia , Cidades/epidemiologia , Interação Gene-Ambiente , Heterozigoto , México/epidemiologia , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/genética , Material Particulado/efeitos adversos , Suicídio/estatística & dados numéricos
2.
Front Hum Neurosci ; 17: 1297467, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38283093

RESUMO

The neuropathological hallmarks of Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal lobar degeneration (FTLD), and amyotrophic lateral sclerosis (ALS) are present in urban children exposed to fine particulate matter (PM2.5), combustion and friction ultrafine PM (UFPM), and industrial nanoparticles (NPs). Metropolitan Mexico City (MMC) forensic autopsies strongly suggest that anthropogenic UFPM and industrial NPs reach the brain through the nasal/olfactory, lung, gastrointestinal tract, skin, and placental barriers. Diesel-heavy unregulated vehicles are a key UFPM source for 21.8 million MMC residents. We found that hyperphosphorylated tau, beta amyloid1-42, α-synuclein, and TAR DNA-binding protein-43 were associated with NPs in 186 forensic autopsies (mean age 27.45 ± 11.89 years). The neurovascular unit is an early NPs anatomical target, and the first two decades of life are critical: 100% of 57 children aged 14.8 ± 5.2 years had AD pathology; 25 (43.9%) AD+TDP-43; 11 (19.3%) AD + PD + TDP-43; and 2 (3.56%) AD +PD. Fe, Ti, Hg, Ni, Co, Cu, Zn, Cd, Al, Mg, Ag, Ce, La, Pr, W, Ca, Cl, K, Si, S, Na, and C NPs are seen in frontal and temporal lobes, olfactory bulb, caudate, substantia nigra, locus coeruleus, medulla, cerebellum, and/or motor cortical and spinal regions. Endothelial, neuronal, and glial damages are extensive, with NPs in mitochondria, rough endoplasmic reticulum, the Golgi apparatus, and lysosomes. Autophagy, cell and nuclear membrane damage, disruption of nuclear pores and heterochromatin, and cell death are present. Metals associated with abrasion and deterioration of automobile catalysts and electronic waste and rare earth elements, i.e., lanthanum, cerium, and praseodymium, are entering young brains. Exposure to environmental UFPM and industrial NPs in the first two decades of life are prime candidates for initiating the early stages of fatal neurodegenerative diseases. MMC children and young adults-surrogates for children in polluted areas around the world-exhibit early AD, PD, FTLD, and ALS neuropathological hallmarks forecasting serious health, social, economic, academic, and judicial societal detrimental impact. Neurodegeneration prevention should be a public health priority as the problem of human exposure to particle pollution is solvable. We are knowledgeable of the main emission sources and the technological options to control them. What are we waiting for?

3.
Toxics ; 10(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35448417

RESUMO

Exposures to fine particulate matter PM2.5 are associated with Alzheimer's, Parkinson's (AD, PD) and TDP-43 pathology in young Metropolitan Mexico City (MMC) residents. High-resolution structural T1-weighted brain MRI and/or Montreal Cognitive Assessment (MoCA) data were examined in 302 volunteers age 32.7 ± 6.0 years old. We used multivariate linear regressions to examine cortical surface area and thickness, subcortical and cerebellar volumes and MoCA in ≤30 vs. ≥31 years old. MMC residents were exposed to PM2.5 ~ 30.9 µg/m3. Robust hemispheric differences in frontal and temporal lobes, caudate and cerebellar gray and white matter and strong associations between MoCA total and index scores and caudate bilateral volumes, frontotemporal and cerebellar volumetric changes were documented. MoCA LIS scores are affected early and low pollution controls ≥ 31 years old have higher MoCA vs. MMC counterparts (p ≤ 0.0001). Residency in MMC is associated with cognitive impairment and overlapping targeted patterns of brain atrophy described for AD, PD and Fronto-Temporal Dementia (FTD). MMC children and young adult longitudinal studies are urgently needed to define brain development impact, cognitive impairment and brain atrophy related to air pollution. Identification of early AD, PD and FTD biomarkers and reductions on PM2.5 emissions, including poorly regulated heavy-duty diesel vehicles, should be prioritized to protect 21.8 million highly exposed MMC urbanites.

4.
J Alzheimers Dis ; 68(3): 1113-1123, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30909241

RESUMO

Exposures to fine particulate matter PM2.5 and ozone O3 are associated with Alzheimer's disease (AD) risk. Mexico City residents have lifetime exposures to PM2.5 and O3 above annual USEPA standards and their brains contain high redox, combustion, and friction-derived magnetite nanoparticles. AD pathological changes with subcortical pre-tangle stages in infancy and cortical tau pre-tangles, NFT Stages I-II, and amyloid phases 1-2 are identified by the 2nd decade. Given their AD continuum, a reliable identification of cognitive impairment is of utmost importance. The Montreal Cognitive Assessment (MoCA) was administered to 517 urbanites, age 21.60±5.88 years, with 13.69±1.28 formal education years, in Mexican PM2.5 polluted cities. MoCA score was 23.92±2.82, and 24.7% and 30.3% scored ≤24 and ≤22, respectively (MCI≤24, AD≤22). Cognitive deficits progressively targeted Visuospatial, Executive, Language, and Memory domains, body mass index (BMI) impacting total scores negatively (p = 0.0008), aging driving down Executive, Visuospatial, and Language index scores (p < 0.0001, 0.0037, and 0.0045), and males performing better in Executive tasks. Average age for AD MoCA scores was 22.38±7.7 years. Residency in polluted cities is associated with progression of multi-domain cognitive impairment affecting 55% of Mexican seemingly healthy youth. Normal BMI ought to be a neuroprotection goal. MoCA provides guidance for further mandatory neuropsychological testing in young populations. Identifying and lowering key neurotoxicants impacting neural risk trajectories in the developing brain and monitoring cognitive performance would greatly facilitate multidisciplinary early diagnosis and prevention of AD in high risk young populations. Cognitive deficits hinder development of those representing the force moving the country in future years.


Assuntos
Disfunção Cognitiva/psicologia , Demência/psicologia , Testes de Estado Mental e Demência , População Urbana/estatística & dados numéricos , Poluição do Ar/efeitos adversos , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/etiologia , Demência/diagnóstico , Demência/epidemiologia , Demência/etiologia , Feminino , Humanos , Masculino , México/epidemiologia , Fatores de Risco , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...