Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36610635

RESUMO

Hormones are key factors in determining the response of organisms to their environment. For example, the juvenile hormone (JH) coordinates the insects' development, reproduction, and survival. However, it is still unclear how the impact of juvenile hormone on insect immunity varies depending on the sex and reproductive state of the individual, as well as the type of the immune challenge (i.e., Gram-positive or Gram-negative bacteria). We used Tenebrio molitor and methoprene, a JH analog (JHa) to explore these relationships. We tested the effect of methoprene on phenoloxidase activity (PO), an important component of humoral immunity in insects, and hemocyte number. Lyophilized Gram-positive Staphylococcus aureus or Gram-negative Escherichia coli were injected for the immune challenge. The results suggest that JH did not affect the proPO, PO activity, or hemocyte number of larvae. JH and immune challenge affected the immune response and consequently, affected adult developmental stage and sex. We propose that the influence of JH on the immune response depends on age, sex, the immune response parameter, and the immune challenge, which may explain the contrasting results about the role of JH in the insect immune response.


Assuntos
Hormônios Juvenis , Metoprene , Animais , Hormônios Juvenis/farmacologia , Monofenol Mono-Oxigenase , Hemócitos , Reprodução
2.
Vaccines (Basel) ; 9(2)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540947

RESUMO

Malaria is a deadly disease that takes the lives of more than 420,000 people a year and is responsible for more than 229 million clinical cases globally. In 2019, 95% of malaria morbidity occurred in African countries. The development of a highly protective vaccine is an urgent task that remains to be solved. Many vaccine candidates have been developed, from the use of the entire attenuated and irradiated pre-erythrocytic parasite forms (or recombinantly expressed antigens thereof) to synthetic candidates formulated in a variety of adjuvants and delivery systems, however these have unfortunately proven a limited efficacy. At present, some vaccine candidates are finishing safety and protective efficacy trials, such as the PfSPZ and the RTS,S/AS01 which are being introduced in Africa. We propose a strategy for introducing non-natural elements into target antigens representing key epitopes of Plasmodium spp. Accordingly, chemical strategies and knowledge of host immunity to Plasmodium spp. have served as the basis. Evidence is obtained after being tested in experimental rodent models for malaria infection and recognized for human sera from malaria-endemic regions. This encourages us to propose such an immune-potentiating strategy to be further considered in the search for new vaccine candidates.

3.
Dev Comp Immunol ; 114: 103830, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32805306

RESUMO

Different evidences suggest that pericardial cells play an important role during the immune response against pathogens that invade the mosquito hemocoel. Previously, we identified two lysozyme genes in Anopheles albimanus heart transcriptome. The present study showed that one of these genes (IDVB: AALB004517) has high percentage of identity to mosquito lysozyme genes related to immunity, suggesting its possible participation during the mosquito immune response. This An. albimanus gen, constitutively expressed lysozyme c-1 mRNA (albLys c-1) in mosquito heart; however, it was overexpressed in bacteria-injected mosquitoes. In heart extract samples, we identified a protein of approximately 14 kDa (likely lysozyme c-1), which lysed M. luteus. In addition, mRNA-FISH assay in heart samples, showed specific fluorescent hybridization signal in pericardial cells from M. luteus-injected mosquitos. We conclude that for the first time an inducible immune factor (lysozyme c-1) is identified in Anopheles albimanus mosquito pericardial cells, which could be a key component in the response against pathogens that interact with the mosquito heart.


Assuntos
Anopheles/imunologia , Escherichia coli/fisiologia , Infecções por Bactérias Gram-Positivas/imunologia , Proteínas de Insetos/metabolismo , Micrococcus luteus/fisiologia , Muramidase/metabolismo , Pericárdio/metabolismo , Animais , Clonagem Molecular , Biologia Computacional , Proteínas de Escherichia coli/imunologia , Imunidade Inata , Proteínas de Insetos/genética , Muramidase/genética , Pericárdio/patologia , Filogenia , Transcriptoma , Regulação para Cima
4.
Sci Rep ; 9(1): 2127, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30765796

RESUMO

Anophelinae mosquitoes are vectors of human malaria, a disease that infects hundreds of millions of people and causes almost 600,000 fatalities annually. Despite their medical importance, laboratory studies on key aspects of Anophelinae reproductive biology have been limited, and in particular, relatively little is known about the role of juvenile hormone (JH) in the control of female reproduction. The study presented here attempts to fill a gap of knowledge in our understanding of the JH control of ovarian development in female Anophelinae mosquitoes, using Anopheles albimanus as a model. Our studies revealed that JH controls the tempo of maturation of primary follicles in An. albimanus in a similar manner to that previously described in Aedes aegypti. At adult eclosion JH hemolymph titer was low, increased in 1-day old sugar-fed insects, and decreased in blood fed individuals. JH titers decreased if An. albimanus females were starved, and were reduced if insects emerged with low teneral reserves, precluding previtellogenic ovarian development. However, absolute hemolymph titers were lower than Ae. aegypti. Decapitation experiments suggested that if teneral reserves are sufficient, factors from the head activate JH synthesis by the corpora allata (CA) during the first 9-12 h after adult emergence. In conclusion, our studies support the hypothesis that JH controls previtellogenic ovarian development in female An. albimanus mosquitoes, in a similar manner that have been described in Culicinae.


Assuntos
Anopheles/crescimento & desenvolvimento , Corpora Allata/citologia , Hemolinfa/efeitos dos fármacos , Hormônios Juvenis/farmacologia , Folículo Ovariano/citologia , Animais , Anopheles/efeitos dos fármacos , Corpora Allata/efeitos dos fármacos , Feminino , Folículo Ovariano/efeitos dos fármacos , Reprodução
5.
Front Immunol ; 9: 2834, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555493

RESUMO

Endoreplication is a cell cycle program in which cells replicate their genomes without undergoing mitosis and cytokinesis. For the normal development of many organisms (from fungi to humans) and the formation of their organs, endoreplication is indispensable. The aim of the present study was to explore whether endoreplication and DNA synthesis are relevant processes during the induction of trained innate immunity in human monocytes and in the Anopheles albimanus mosquito cell line. During the induction of trained immunity in both models, endoreplication markers were overexpressed and we observed an increase in DNA synthesis with an augmented copy number of genes essential for trained immunity. Blocking DNA synthesis prevented trained immunity from being established. Overall, these findings suggest that DNA synthesis and endoreplication are important mechanisms involved in inducing innate immune memory. They have probably been conserved throughout evolution from invertebrates to humans.


Assuntos
Anopheles , DNA , Imunidade Inata , Memória Imunológica , Modelos Imunológicos , Monócitos , Animais , Anopheles/imunologia , Anopheles/metabolismo , DNA/biossíntese , DNA/imunologia , Humanos , Monócitos/imunologia , Monócitos/metabolismo
6.
Front Microbiol ; 9: 801, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29755433

RESUMO

Aedes aegypti is the main vector of Dengue Virus, carrying the virus during the whole mosquito life post-infection. Few mosquito fitness costs have been associated to the virus infection, thereby allowing for a swift dissemination. In order to diminish the mosquito population, public health agency use persistent chemicals with environmental impact for disease control. Most countries barely use biological controls, if at all. With the purpose of developing novel Dengue control strategies, a detailed understanding of the unexplored virus-vector interactions is urgently needed. Damage induced (through tissue injury or bacterial invasion) DNA duplication (endoreplication) has been described in insects during epithelial cells renewal. Here, we delved into the mosquito midgut tissue ability to synthesize DNA de novo; postulating that Dengue virus infection could trigger a protective endoreplication mechanism in some mosquito cells. We hypothesized that the Aedes aegypti orthologue of the Drosophila melanogaster hindsight gene (not previously annotated in Aedes aegypti transcriptome/genome) is part of the Delta-Notch pathway. The activation of this transcriptional cascade leads to genomic DNA endoreplication. The amplification of the genomic copies of specific genes ultimately limits the viral spreading during infection. Conversely, inhibiting DNA synthesis capacity, hence endoreplication, leads to a higher viral replication.

7.
Peptides ; 82: 67-75, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27288244

RESUMO

The coordination of physiological processes requires precise communication between cells. Cellular interactions allow cells to be functionally related, facilitating the maintaining of homeostasis. Neuropeptides functioning as intercellular signals are widely distributed in Metazoa. It is assumed that neuropeptides were the first intercellular transmitters, appearing early during the evolution. In Cnidarians, neuropeptides are mainly involved in neurotransmission, acting directly or indirectly on epithelial muscle cells, and thereby controlling coordinated movements. Allatostatins are a group of chemically unrelated neuropeptides that were originally characterized based on their ability to inhibit juvenil hormone synthesis in insects. Allatostatin-C has pleiotropic functions, acting as myoregulator in several insects. In these studies, we analyzed the myoregulatory effect of Aedes aegypti Allatostatin-C in Hydra sp., a member of the phylum Cnidaria. Allatostatin-C peptide conjugated with Qdots revealed specifically distributed cell populations that respond to the peptide in different regions of hydroids. In vivo physiological assays using Allatostatin-C showed that the peptide induced changes in shape and length in tentacles, peduncle and gastrovascular cavity. The observed changes were dose and time dependent suggesting the physiological nature of the response. Furthermore, at highest doses, Allatostatin-C induced peristaltic movements of the gastrovascular cavity resembling those that occur during feeding. In silico search of putative Allatostatin-C receptors in Cnidaria showed that genomes predict the existence of proteins of the somatostatin/Allatostatin-C receptors family. Altogether, these results suggest that Allatostatin-C has myoregulatory activity in Hydra sp, playing a role in the control of coordinated movements during feeding, indicating that Allatostatin-C/Somatostatin based signaling might be an ancestral mechanism.


Assuntos
Evolução Molecular , Neuropeptídeos/metabolismo , Somatostatina/metabolismo , Aedes/química , Animais , Hydra/efeitos dos fármacos , Hydra/crescimento & desenvolvimento , Neuropeptídeos/química , Neuropeptídeos/genética , Neuropeptídeos/farmacologia , Transdução de Sinais , Somatostatina/genética , Somatostatina/farmacologia
8.
J Insect Physiol ; 72: 22-27, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25445664

RESUMO

Juvenile hormone III (JH) is synthesized by the corpora allata (CA) and plays a key role in mosquito development and reproduction. A decrease in JH titer during the last instar larvae allows pupation and metamorphosis to proceed. As the anti-metamorphic role of JH comes to an end, the CA of the late pupa once again synthesizes JH, which plays an essential role in orchestrating reproductive maturation. In spite of the importance of Aedes aegypti as a vector, a detailed study of the changes of JH hemolymph titers during the gonotrophic cycle has never been performed. In the present studies, using a high performance liquid chromatography coupled to a fluorescent detector (HPLC-FD) method, we measured changes in JH levels in the hemolymph of female mosquitoes during the pupal and adult stages. Our results revealed tightly concomitant changes in JH biosynthesis and JH hemolymph titers during the gonotrophic cycle of female mosquito. Feeding high sugar diets resulted in an increase of JH titers, and mating also modified JH titers in hemolymph. In addition these studies confirmed that JH titer in mosquitoes is fundamentally determined by the rate of biosynthesis in the CA.


Assuntos
Aedes/metabolismo , Hemolinfa/metabolismo , Hormônios Juvenis/metabolismo , Sesquiterpenos/metabolismo , Aedes/crescimento & desenvolvimento , Animais , Carboidratos , Corpora Allata/metabolismo , Feminino , Pupa/crescimento & desenvolvimento , Pupa/metabolismo , Reprodução
9.
Arthropod Struct Dev ; 43(6): 571-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25043894

RESUMO

Hemipterans and thysanopterans (Paneoptera: Condylognatha) differ from other insects by having an intestinal perimicrovillar membrane (PMM) which extends from the base of the microvilli to the intestinal lumen. The development and composition of the PMM in hematophagous Reduviidae depend on factors related to diet. The PMM may also allow the human parasite Trypanosoma cruzi, the etiological agent of human Chagas Disease, to establish and develop in this insect vector. We studied the PMM development in the Mexican vector of Chagas Disease, Triatoma (Meccus) pallidipennis. We describe changes in the midgut epithelial cells of insects in response to starvation, and at different times (10, 15 and 20 days) after bloodfeeding. In starved insects, the midguts showed epithelial cells closely connected to each other but apparently free of PMM with some regions being periodic acid-Schiff (PAS-Schiff) positive. In contrast, the PMM was evident and fully developed in the midgut region of insects 15 days after feeding. After this time, the PMM completely covered the microvilli and reached the midgut lumen. At 15 days following feeding the labeled PAS-Schiff increased in the epithelial apex, suggesting an increase in carbohydrates. Lectins as histochemical reagents show the presence of a variety of glycoconjugates including mannose, glucose, galactosamine, N-acetyl-galactosamine. Also present were N-acetyl-glucosamine and sialic acid which contribute to the successful establishment and replication or T. cruzi in its insect vectors. By means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM), the formation and structure of the PMM is confirmed at 15 days post feeding. Our results confirmed the importance of the feeding processes in the formation of the PMM and showed the nature of the biochemical composition of the vectors' intestine in this important Mexican vector of Chagas disease.


Assuntos
Insetos Vetores/química , Insetos Vetores/crescimento & desenvolvimento , Triatoma/química , Triatoma/crescimento & desenvolvimento , Animais , Sistema Digestório/química , Sistema Digestório/citologia , Sistema Digestório/crescimento & desenvolvimento , Insetos Vetores/ultraestrutura , Membranas/química , Membranas/crescimento & desenvolvimento , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Triatoma/ultraestrutura
10.
PLoS One ; 8(10): e77520, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24143240

RESUMO

BACKGROUND: Cell-cell interactions are a basic principle for the organization of tissues and organs allowing them to perform integrated functions and to organize themselves spatially and temporally. Peptidic molecules secreted by neurons and epithelial cells play fundamental roles in cell-cell interactions, acting as local neuromodulators, neurohormones, as well as endocrine and paracrine messengers. Allatotropin (AT) is a neuropeptide originally described as a regulator of Juvenile Hormone synthesis, which plays multiple neural, endocrine and myoactive roles in insects and other organisms. METHODS: A combination of immunohistochemistry using AT-antibodies and AT-Qdot nanocrystal conjugates was used to identify immunoreactive nerve cells containing the peptide and epithelial-muscular cells targeted by AT in Hydra plagiodesmica. Physiological assays using AT and AT- antibodies revealed that while AT stimulated the extrusion of the hypostome in a dose-response fashion in starved hydroids, the activity of hypostome in hydroids challenged with food was blocked by treatments with different doses of AT-antibodies. CONCLUSIONS: AT antibodies immunolabeled nerve cells in the stalk, pedal disc, tentacles and hypostome. AT-Qdot conjugates recognized epithelial-muscular cell in the same tissues, suggesting the existence of anatomical and functional relationships between these two cell populations. Physiological assays indicated that the AT-like peptide is facilitating food ingestion. SIGNIFICANCE: Immunochemical, physiological and bioinformatics evidence advocates that AT is an ancestral neuropeptide involved in myoregulatory activities associated with meal ingestion and digestion.


Assuntos
Comportamento Alimentar , Hormônios de Inseto/metabolismo , Neuropeptídeos/metabolismo , Animais , Biologia Computacional , Regulação da Expressão Gênica , Hydra/metabolismo , Hormônios de Inseto/química , Neuropeptídeos/química , Pontos Quânticos , Receptores de Neuropeptídeos/metabolismo
11.
Arch Insect Biochem Physiol ; 84(1): 1-14, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23797988

RESUMO

The induction of DNA synthesis in various tissues of Anopheles albimanus, in response to challenge with Saccharomyces cerevisiae, Micrococcus luteus, and Serratia marcescens, was analyzed by 5-bromo-2-deoxy-uridine (BrdU) incorporation. Microorganism-inoculated mosquitoes were fed with a sucrose solution containing BrdU and maintained alive for 5 days. Alternatively, abdominal carcasses of microorganisms-inoculated mosquitoes were cultivated in Roswell Park Memorial Institute (RPMI) medium supplemented with BrdU for 5 days. Control groups were inoculated with RPMI alone. In both experiments, DNA synthesis, evidenced by epifluorescence with an anti-BrdU fluorescein-labeled antibody, occurred in fat body, epithelial cells of pleural membranes, dorsal vessel, and the oviducts. Relative quantification of DNA synthesis, evaluated by ELISA using an anti-BrdU peroxidase-labeled antibody, was higher in abdomen tissues of microorganisms-inoculated mosquitoes than controls in in vitro and in vivo experiments. The intensity of DNA synthesis varied among the different microorganism challenges, but was higher in in vivo experiments, compared to cultured samples. These differences in DNA synthesis suggest a compartmentalization of the immune response, probably mediated by different signaling pathways.


Assuntos
Anopheles/imunologia , Anopheles/metabolismo , DNA/biossíntese , Animais , Anopheles/genética , Anopheles/microbiologia , Bromodesoxiuridina/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Imunofluorescência , Micrococcus luteus/fisiologia , Especificidade de Órgãos , Saccharomyces cerevisiae/fisiologia , Serratia marcescens/fisiologia , Especificidade da Espécie
12.
Insect Biochem Mol Biol ; 42(7): 466-73, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22480496

RESUMO

In insects, neuropeptides play a central role in the control of most physiological processes. The knowledge and characterization of new neuropeptide families, is of interest on the fields of Genetics, Genomics, Neurobiology, Endocrinology and Evolution. This knowledge also provides the tools for the design of peptidomimetics, pseudopeptides or small molecules, capable of disrupting the physiological processes regulated by the signaling molecules and their receptors. This is a promising target for a novel generation of insecticides. Using database searches, mass spectrometry and RACE-PCR, we identified a neuropeptide precursor transcript encoding a new family of insect neuropeptides in the hemipteran Rhodnius prolixus. We named this precursor Orcokinin B, because is originated by the alternative splicing of the Orcokinin gen. EST and genomic data suggests that Orcokinin B is expressed in the nervous system and gut from several insect species, with the exception of Drosophila sp. (Diptera) and Acyirthosiphon pisum (Hemiptera). Mass spectrometry and RT-PCR confirmed the expression of Orcokinin B in brain and anterior midgut of R. prolixus. Furthermore, we identified orthologues of this new family of peptides in genomic and EST databases from Arachnids and Crustaceans.


Assuntos
Proteínas de Insetos/genética , Neuropeptídeos/genética , Rhodnius/genética , Processamento Alternativo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Trato Gastrointestinal/citologia , Trato Gastrointestinal/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Dados de Sequência Molecular , Neuropeptídeos/química , Neuropeptídeos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rhodnius/química , Rhodnius/metabolismo , Alinhamento de Sequência , Espectrometria de Massas em Tandem
13.
Biochemistry ; 48(37): 8899-907, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19697959

RESUMO

Cry11Aa is the most active Bacillus thuringiensis israelensis toxin against Aedes aegypti larvae. Ae. aegypti alkaline phosphatase (ALP) was previously identified as a Cry11Aa receptor mediating toxicity. Here we report the cloning and functional characterization of this Ae. aegypti Cry11Aa-ALP receptor. Of three ALP's cDNA clones, the recombinant produced ALP1 isoform was shown to bind Cry11Aa and P1.BBMV peptide phage that specifically binds the midgut ALP-Cry11Aa receptor. An anti-ALP1 antibody inhibited binding to brush border membrane vesicles and toxicity of Cry11Aa in isolated cultured guts. Two ALP1 Cry11Aa binding regions (R59-G102 and N257-I296) were mapped by characterizing binding of Cry11Aa to nine recombinant overlapping peptides covering the ALP1 sequence. Finally, by using a peptide spot array of Cry11Aa domain III and site-directed mutagenesis, we show that the ALP1 R59-G102 region binds Cry11Aa through domain II loop alpha-8 while ALP1 N257-I296 interacts with Cry11Aa through domain III 561RVQSQNSGNN570 located in beta18-beta19. Our results show that Cry11Aa domain II and domain III are involved in the binding with two distinct binding sites in the ALP1 receptor.


Assuntos
Aedes/enzimologia , Fosfatase Alcalina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Endotoxinas/genética , Endotoxinas/metabolismo , Mapeamento de Epitopos , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Mutagênese Sítio-Dirigida , Receptores de Superfície Celular/metabolismo , Aedes/genética , Aedes/metabolismo , Fosfatase Alcalina/genética , Sequência de Aminoácidos , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/isolamento & purificação , Sítios de Ligação , Clonagem Molecular , Endotoxinas/isolamento & purificação , Proteínas Hemolisinas/isolamento & purificação , Isoenzimas/genética , Isoenzimas/metabolismo , Larva/enzimologia , Larva/genética , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência
14.
Infect Genet Evol ; 9(6): 1083-91, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19481174

RESUMO

Trypanosoma cruzi amastigote surface proteins are the target of both humoral and cell-mediated immune responses; however, few such molecules have been thoroughly studied. In order to study a T. cruzi amastigote-specific protein (SSP4), we used antibodies against the deglycosylated form of this molecule to clone cDNA. The selected cDNA clone (2070 bp) encodes for a 64 kDa protein product whose sequence analysis revealed no N-glycosylation signal. The DNA sequence showed high homology with a member of a previously reported dispersed repetitive gene family of T. cruzi. Antibodies against the recombinant protein reacted strongly with a 66 kDa protein and weakly with an 84 kDa protein in amastigote extracts. Immunoelectron microscopy studies showed that intracellular amastigotes express the native protein on their surfaces and flagellar pockets. The antibody label was also associated with an amorphous material present in the parasitic cavity and in direct contact with the parasite surface, which suggest that amastigotes are releasing this material. On cell-free amastigotes, the antibody showed strong decoration of the cell surface and labeling of intracellular vesicles. Immunofluorescence analysis showed that the superficial protein is expressed shortly after trypomastigotes begin to transform into amastigotes. Anti-recombinant protein antibodies recognized proteins of 100 kDa and 50-60 kDa in protein extracts of rat heart and skeletal muscle, respectively.


Assuntos
Proteínas de Protozoários , Trypanosoma cruzi/fisiologia , Sequência de Aminoácidos , Animais , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/metabolismo , Linhagem Celular , Doença de Chagas/imunologia , Doença de Chagas/metabolismo , Doença de Chagas/parasitologia , Doença de Chagas/patologia , Clonagem Molecular , DNA Complementar/genética , Regulação da Expressão Gênica , Humanos , Estágios do Ciclo de Vida/genética , Macaca mulatta , Dados de Sequência Molecular , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Ratos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Trypanosoma cruzi/ultraestrutura
15.
Mol Biochem Parasitol ; 153(2): 167-77, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17442413

RESUMO

Malaria parasite transmission-blocking control strategies within the mosquito vector require an adequate understanding of the parasite mosquito interaction at the molecular level. The ookinete P25-P28 surface proteins are required for the transition from ookinete to oocyst in the mosquito midgut; however, their respective molecular interactions in the mosquito are largely unknown. We used recombinant Pvs25 and Pvs28 as probes for identification of potential Anopheles albimanus midgut ligands. A 50 kDa protein interacted with Pvs25 but not with Pvs28 in blot overlay assays. This protein was identified as calreticulin by LS MS and was detected in membrane, but not in soluble midgut protein extracts. Calreticulin was detected in An. albimanus midgut microvilli by immunofluorescence analysis. The An. albimanus calreticulin cDNA was cloned and recombinant calreticulin was shown to interact with recombinant Pvs25 in overlay and co-immunoprecipitation assays, confirming the interaction of the two proteins. The Pvs25-calreticulin interaction in vivo could represent a potential target for developing transmission blocking strategies based on interfering the parasite-midgut interaction.


Assuntos
Anopheles , Antígenos de Protozoários/metabolismo , Antígenos de Superfície/metabolismo , Calreticulina/metabolismo , Sistema Digestório , Insetos Vetores , Vacinas Antimaláricas/metabolismo , Plasmodium vivax/metabolismo , Sequência de Aminoácidos , Animais , Anopheles/genética , Anopheles/metabolismo , Anopheles/parasitologia , Antígenos de Protozoários/química , Antígenos de Protozoários/genética , Antígenos de Superfície/química , Antígenos de Superfície/genética , Sequência de Bases , Calreticulina/química , Calreticulina/genética , Homólogo 5 da Proteína Cromobox , Clonagem Molecular , Sistema Digestório/metabolismo , Sistema Digestório/parasitologia , Humanos , Insetos Vetores/genética , Insetos Vetores/metabolismo , Insetos Vetores/parasitologia , Vacinas Antimaláricas/química , Vacinas Antimaláricas/genética , Dados de Sequência Molecular , Plasmodium vivax/crescimento & desenvolvimento , Plasmodium vivax/fisiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA