Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3372, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643198

RESUMO

Optical interference filters (OIFs) are vital components for a wide range of optical and photonic systems. They are pivotal in controlling spectral transmission and reflection upon demand. OIFs rely on optical interference of the incident wave at multilayers, which are fabricated with nanometer precision. Here, we demonstrate that these requirements can be fulfilled by inkjet printing. This versatile technology offers a high degree of freedom in manufacturing, as well as cost-affordable and rapid-prototyping features from the micron to the meter scale. In this work, via rational ink design and formulation, OIFs were fully inkjet printed in ambient conditions. Longpass, shortpass, bandpass, and dichroic OIFs were fabricated, and precise control of the spectral response in OIFs was realized. Subsequently, customized lateral patterning of OIFs by inkjet printing was achieved. Furthermore, upscaling of the printed OIFs to A4 size (29.7 × 21.0 cm²) was demonstrated.

2.
Sci Rep ; 14(1): 3296, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332022

RESUMO

Emerging areas such as the Internet of Things (IoT), wearable and wireless sensor networks require the implementation of optoelectronic devices that are cost-efficient, high-performing and capable of conforming to different surfaces. Organic semiconductors and their deposition via digital printing techniques have opened up new possibilities for optical devices that are particularly suitable for these innovative fields of application. In this work, we present the fabrication and characterization of high-performance organic photodiodes (OPDs) and their use as an optical receiver in an indoor visible light communication (VLC) system. We investigate and compare different device architectures including spin-coated, partially-printed, and fully-printed OPDs. The presented devices exhibited state-of-the-art performance and reached faster detection speeds than any other OPD previously reported as organic receivers in VLC systems. Finally, our results demonstrate that the high-performance of the fabricated OPDs can be maintained in the VLC system even after the fabrication method is transferred to a fully-inkjet-printed process deposited on a mechanically flexible substrate. A comparison between rigid and flexible samples shows absolute differences of only 0.2 b s-1 Hz-1 and 2.9 Mb s-1 for the spectral efficiency and the data rate, respectively.

3.
Physiol Meas ; 44(9)2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37607562

RESUMO

Objective. To explore noise characteristics and the effect physiological activity has on the link between impedance and noise.Approach. Dry-printed electrodes are emerging as a new and exciting technology for skin electro-physiology. Such electrode arrays offer many advantages including user convenience, quick placement, and high resolution. Here we analyze extensive electro-physiological data recorded from the arm and the face to study and quantify the noise of dry electrodes, and to characterize the link between noise and impedance. In particular, we studied the effect of the physiological state of the subject (e.g. rapid eye movement sleep) on noise.Main results. We show that baseline noise values extracted from dry electrodes in the arm are in agreement with the Nyquist equation. In the face, on the other hand, the measured noise values were higher than the values predicted by the Nyquist equation. In addition, we studied how different electrode properties affect performances, including electrode size, shape, and material properties.Significance. Altogether, the results presented here provide a basis for understanding dry electrode performances and substantiate their great potential in electro-physiological investigations.


Assuntos
Fenômenos Fisiológicos da Pele , Impedância Elétrica , Eletrodos
4.
Adv Mater ; 35(21): e2212189, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36872845

RESUMO

Highly sensitive microfiber strain sensors are promising for the detection of mechanical deformations in applications where limited space is available. In particular for in situ battery thickness monitoring where high resolution and low detection limit are key requirements. Herein, the realization of a highly sensitive strain sensor for in situ lithium-ion (Li-ion) battery thickness monitoring is presented. The compliant fiber-shaped sensor is fabricated by an upscalable wet-spinning method employing a composite of microspherical core-shell conductive particles embedded in an elastomer. The electrical resistance of the sensor changes under applied strain, exhibiting a high strain sensitivity and extremely low strain detection limit of 0.00005 with high durability of 10 000 cycles. To demonstrate the accuracy and ease of applicability of this sensor, the real-time thickness change of a Li-ion battery pouch cell is monitored during the charge and discharge cycles. This work introduces a promising approach with the least material complexity for soft microfiber strain gauges.

5.
Nanoscale ; 14(47): 17743-17753, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36421075

RESUMO

The competitive performance of optoelectronic devices based on advanced organic semiconductors increasingly calls for suitably scalable processing schemes to capitalise on their application potential. With performance benchmarks typically established by spin-coating fabrication, doctor-blade deposition represents a widely available roll-to-roll-compatible means for the preparation of large-area samples and establishing the device upscaling potential. However, the inherently slower film formation kinetics often result in unfavourable active layer microstructures, requiring empirical and material-inefficient optimisation of solutions to reach the performance of spin-coated devices. Here we present a versatile approach to achieving performance parity for spin- and blade-coated devices using in situ gas-assisted drying enabled by a modular 3D-printed attachment. This is illustrated for organic photodetectors (OPDs) featuring bulk heterojunction active layers comprising blends of P3HT and PM6 polymer donors with the nonfullerene acceptor ITIC. Compared to conventionally blade-coated devices, mild drying gas pressures of 0.5-2 bar yield up to a 10-fold enhancement of specific detectivity by maximising external quantum efficiency and suppressing dark-current. Furthermore, controlling gas flux distribution enables one-step fabrication of 1D chain conformation and 2D chain orientation patterns in, respectively, PFO and P3HT:N2200 blend films, opening the possibility for high-throughput fabrication of devices with complex structured active layers.

6.
ACS Appl Mater Interfaces ; 14(38): 43568-43575, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36103296

RESUMO

Displays and indicators are an integral component of everyday electronics. However, the short lifecycle of most applications is currently contributing to the unsustainable growth of electronic waste. In this work, we utilize ecofriendly materials in combination with sustainable processing techniques to fabricate inkjet-printed, ecofriendly dual-mode displays (DMDs). These displays can be used in a reflective mode or an emissive mode by changing between DC and AC operation due to the combination of an electrochromic (EC) and electrochemiluminescent (ECL) layer in a single device. The EC polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) serves as the reflective layer, while an ECL gel made of dimethylsulfoxide (DMSO), poly(lactic-co-glycolic acid) (PLGA), 1-butyl-3-methylimidazoliumbis(oxalato)borate (BMIMBOB), and tris(bipyridine)ruthenium(II) chloride (Ru2+(bpy)3Cl2) enables the emissive mode. The final dual-mode devices exhibited their maximum optical power output of 52 mcd/m2 at 4 V and 40 Hz and achieved an EC contrast of 45% and a coloration efficiency of 244 cm2/C at a wavelength of 690 nm. The fabricated devices showed clear readability in dark and light conditions when operated in reflective or emissive modes. This work demonstrates the applicability of ecofriendly and potentially biodegradable materials to reduce the amount of hazardous components in versatile display technologies.

7.
Adv Mater ; 34(33): e2201348, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35608235

RESUMO

Bragg mirrors are widely applied in optical and photonic devices due to their capability of light management. However, the fabrication of Bragg mirrors is mainly accomplished by physical and chemical vapor deposition processes, which are costly and do not allow for lateral patterning. Here, the fabrication of Bragg mirrors by fully inkjet printing is reported. The photonic bandgap of Bragg mirrors is tailored by adjusting the number of bilayers in the stack and the layer thickness via simply varying printing parameters. An ultrahigh reflectance of 99% is achieved with the devices consisting of ten bilayers only, and the central wavelength of Bragg mirrors is tuned from visible into near-infrared wavelength range. Inkjet printing allows for fabricating Bragg mirrors on various substrates (e.g., glass and foils), in different sizes and variable lateral patterns. The printed Bragg mirrors not only exhibit a high reflection at designed wavelengths but also show an outstanding homogeneity in color over a large area. The approach thus enables additive manufacturing for various applications ranging from microscale photonic elements to enhanced functionality and aesthetics in large-area displays and solar technologies.

8.
ACS Nano ; 15(4): 7305-7317, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33844505

RESUMO

The spontaneous phase separation of two or more polymers is a thermodynamic process that can take place in both biological and synthetic materials and which results in the structuring of the matter from the micro- to the nanoscale. For photonic applications, it allows forming quasi-periodic or disordered assemblies of light scatterers at high throughput and low cost. The wet process methods currently used to fabricate phase-separated nanostructures (PSNs) limit the design possibilities, which in turn hinders the deployment of PSNs in commercialized products. To tackle this shortcoming, we introduce a versatile and industrially scalable deposition method based on the inkjet printing of a polymer blend, leading to PSNs with a feature size that is tuned from a few micrometers down to sub-100 nm. Consequently, PSNs can be rapidly processed into the desired macroscopic design. We demonstrate that these printed PSNs can improve light management in manifold photonic applications, exemplified here by exploiting them as a light extraction layer and a metasurface for light-emitting devices and point-of-care biosensors, respectively.

9.
ACS Appl Mater Interfaces ; 12(13): 15774-15784, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32182029

RESUMO

Flexible direct conversion X-ray detectors enable a variety of novel applications in medicine, industry, and science. Hybrid organic-inorganic perovskite semiconductors containing elements of high atomic number combine an efficient X-ray absorption with excellent charge transport properties. Due to their additional cost-effective and low-temperature processability, perovskite semiconductors represent promising candidates to be used as active materials in flexible X-ray detectors. Inspired by the promising results recently reported on X-ray detectors that are based on either triple cation perovskites or inkjet-printed perovskite quantum dots, we here investigate flexible inkjet-printed triple cation perovskite X-ray detectors. The performance of the detectors is evaluated by the X-ray sensitivity, the dark current, and the X-ray stability. Exposed to 70 kVp X-ray radiation, reproducible and highly competitive X-ray sensitivities of up to 59.9 µC/(Gyaircm2) at low operating voltages of 0.1 V are achieved. Furthermore, a significant dark current reduction is demonstrated in our detectors by replacing spin-coated poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) with sputtered NiOx hole transport layers. Finally, stable operation of a flexible X-ray detector for a cumulative X-ray exposure of 4 Gyair is presented, and the applicability of our devices as X-ray imaging detectors is shown. The results of this study represent a proof of concept toward flexible direct conversion X-ray detectors realized by cost-effective and high-throughput digital inkjet printing.

10.
Adv Mater ; 32(12): e1908258, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32068919

RESUMO

Future lightweight, flexible, and wearable electronics will employ visible-light-communication schemes to interact within indoor environments. Organic photodiodes are particularly well suited for such technologies as they enable chemically tailored optoelectronic performance and fabrication by printing techniques on thin and flexible substrates. However, previous methods have failed to address versatile functionality regarding wavelength selectivity without increasing fabrication complexity. This work introduces a general solution for printing wavelength-selective bulk-heterojunction photodetectors through engineering of the ink formulation. Nonfullerene acceptors are incorporated in a transparent polymer donor matrix to narrow and tune the response in the visible range without optical filters or light-management techniques. This approach effectively decouples the optical response from the viscoelastic ink properties, simplifying process development. A thorough morphological and spectroscopic investigation finds excellent charge-carrier dynamics enabling state-of-the-art responsivities >102 mA W-1 and cutoff frequencies >1.5 MHz. Finally, the color selectivity and high performance are demonstrated in a filterless visible-light-communication system capable of demultiplexing intermixed optical signals.

11.
RSC Adv ; 10(60): 36695-36703, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35517963

RESUMO

The molecule 2'-O-apiosyl-6'-O-crotonic acid-betanin (called Achkiy) was obtained after an ecofriendly and low-cost purification process of the extract from the ayrampo seed cuticle. Results from EDS give us an idea of the organic elements present in the ayrampo cuticle layer composed of carbon, oxygen and nitrogen. Further characterization analysis of ayrampo extract by Fourier Transform Infrared Spectrophotometry (FTIR) corroborated the presence of characteristic functional groups corresponding to carboxyl, carbonyls, hydroxyls and secondary amines. On the other hand, we have confirmed by absortion peak the glucose, apiosyl, crotonic acid and betanin at 227 nm, 276 nm, 291 nm and 534 nm bands respectively. Mass Spectrometry (MS) characterization was used finally to identify the electroactive Achkiy molecule. This molecule was tested in an Organic Light Emitting Diode (OLED) achieving a luminance of 4.8 Cd m-2 when bias voltage of 16.5 V and a current of 34.1 mA was applied. In addition, the irradiance generated by the Achkiy layer reaches a value of ≈ 113.3 µW m-2 emitting light with a λ ≈ 390.10 nm. These preliminary results report an interesting molecule extracted from a natural pigment wich emits light in the blue region.

12.
Dalton Trans ; 48(34): 12803-12807, 2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31305821

RESUMO

The coordination of B(C6F5)3 to materials based on six-membered phosphorus heterocycles via P[double bond, length as m-dash]O bonds tunes their physicochemical properties both in solution and in the solid state, remarkably improving their performances in light-emitting layers.

13.
Dalton Trans ; 48(22): 7503-7508, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-30865206

RESUMO

A family of electroluminescent organophosphorus materials for solution-processed organic light-emitting diodes is reported. The investigated systems present a six-membered phosphorus heterocycle fused with a pyrrole or benzopyrrole moiety. The materials exhibit high thermal stability and are soluble in a variety of organic solvents. Already in very simple OLED architectures, the novel electroluminescent materials display blue or cyan luminescence; i.e. color coordinates x = 0.18; y = 0.21 and x = 0.22; y = 0.30, respectively, with performances that are in the range of state-of-the-art phosphazene materials. In electrofluorochromic devices, the color emission coordinates of the organophosphorus materials are tuned upon applying an electric potential. These findings set the bedrock for the development of new generations of organophosphorus light-emitting devices.

14.
ACS Appl Mater Interfaces ; 10(49): 42733-42739, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30430828

RESUMO

Digitally printed organic photodiodes (OPDs) are of great interest for the cost-efficient additive manufacturing of single and multidevice detection systems with full freedom of design. Recently reported high-performance non-fullerene acceptors (NFAs) can address the crucial demands of future applications in terms of high operational speed, tunable spectral response, and device stability. Here, we present the first demonstration of inkjet and aerosol-jet printed OPDs based on the high-performance NFA, IDTBR, in combination with poly(3-hexylthiophene), exhibiting a spectral response up to the near-infrared (NIR) region. These digitally printed devices reach record responsivities up to 300 mA/W in the visible and NIR spectrum, competing with current commercially available technologies based on Si. Furthermore, their fast dynamic response with cutoff frequencies surpassing 2 MHz outperforms most of the state-of-the-art OPDs. The successful process translation from spin-coating to printing is highlighted by the marginal loss in performance compared to the reference devices, which reach responsivities of 400 mA/W and detection speeds of more than 4 MHz. The achieved high device performance and the industrial relevance of the developed fabrication process provide NFAs with an enormous potential for the development of printed photodetection systems.

16.
ACS Appl Mater Interfaces ; 10(30): 25754-25762, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30028121

RESUMO

Organic chromophores that exhibit aggregation-induced emission (AIE) are of interest for applications in displays, lighting, and sensing, because they can maintain efficient emission at high molecular concentrations in the solid state. Such advantages over conventional chromophores could allow thinner conversion layers of AIE chromophores to be realized, with benefits in terms of the efficiency of the optical outcoupling, thermal management, and response times. However, it is difficult to create large-area optical quality thin films of efficiently performing AIE chromophores. Here, we demonstrate that this can be achieved by using a surface-anchored metal-organic framework (SURMOF) thin film coating as a host substrate, into which the tetraphenylethylene (TPE)-based AIE chromophore can be printed. We demonstrate that the SURMOF constrains the AIE-chromophore molecular conformation, affording efficient performance even at low loading densities in the SURMOF. As the loading density of the AIE chromophore in the SURMOF is increased, its absorption and emission spectra are tuned due to increased interaction between AIE molecules, but the high photoluminescent quantum yield (PLQY = 50% for this AIE chromophore) is maintained. Lastly, we demonstrate that patterns of the AIE chromophore with 70 µm feature sizes can be easily created by inkjet printing onto the SURMOF substrate. These results foreshadow novel possibilities for the creation of patterned phosphor thin films utilizing AIE chromophores for display or lighting applications.

17.
Langmuir ; 34(21): 5964-5970, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29718677

RESUMO

Digital printing enables solution processing of functional materials and opens a new route to fabricate low-cost electronic devices. One crucial parameter that affects the wettability of inks for all printing techniques is the surface free energy (SFE) of the substrate. Siloxanes, with their huge variety of side chains and their ability to form self-assembled monolayers, offer exhaustive control of the substrate SFE from hydrophilic to hydrophobic. Thus, siloxane treatment is a suitable approach to adjust the substrate conditions to the desired ink, instead of optimizing the ink to an arbitrary substrate. In this work, the influence of different fluorinated and nonfluorinated siloxanes on the SFE of different substrates, such as polymers, glasses, and metals, are examined. By mixing several siloxanes, we demonstrate the fine tuning of the surface energy. The polar and dispersive components of the SFE are determined by the Owens-Wendt-Rabel-Kaelble (OWRK) method. Furthermore, the impact of the siloxanes and therefore the SFE on the pinning of droplets and wet films are assessed via dynamic contact angle measurements. SFE-optimized substrates enable tailoring the resolution of inkjet printed silver structures. A nanoparticulate silver ink was used for printing single drops, lines, and source-drain electrodes for transistors. These were examined in terms of diameter, edge quality, and functionality. We show that by adjusting the SFE of an arbitrary substrate, the printed resolution is substantially increased by minimizing the printed drop size by up to 70%.

18.
ACS Appl Mater Interfaces ; 10(10): 8877-8884, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29460626

RESUMO

We investigate three amine-based polymers, polyethylenimine and two amino-functionalized polyfluorenes, as electron injection layers (EILs) in organic light-emitting diodes (OLEDs) and find correlations between the molecular structure of the polymers, the electronic alignment at the emitter/EIL interface, and the resulting device performance. X-ray photoelectron spectroscopy measurements of the emitter/EIL interface indicate that all three EIL polymers induce an upward shift of the Fermi level in the emitting layer close to the interface similar to n-type doping. The absolute value of this Fermi level shift, which can be explained by an electron transfer from the EIL polymers into the emitting layer, correlates with the number of nitrogen-containing groups in the side chains of the polymers. Whereas polyethylenimine (PEI) and one of the investigated polyfluorenes (PFCON-C) have six such groups per monomer unit, the second investigated polyfluorene (PFN) only possesses two. Consequently, we measure Fermi level shifts of 0.5-0.7 eV for PEI and PFCON-C and only 0.2 eV for PFN. As a result of these Fermi level shifts, the energetic barrier for electron injection is significantly lowered and OLEDs which comprise PEI or PFCON-C as an EIL exhibit a more than twofold higher luminous efficacy than OLEDs with PFN.

19.
Opt Express ; 26(2): A144-A152, 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29401904

RESUMO

We report on digitally printed distributed feedback lasers on flexible polyethylene terephthalate substrates based on methylammonium lead iodide perovskite gain material. The perovskite lasers are printed with a digital drop-on-demand inkjet printer, providing full freedom in the shape and design of the gain layer. We show that adjusting the perovskite ink increases the potential processing window and decreases the surface roughness of the active layer to less than 7 nm, which is essential for low lasing thresholds. Prototype inkjet-printed perovskite lasers processed on top of nanopatterned rigid as well as flexible substrates are demonstrated. Optimized perovskite gain layers printed on PET substrates demonstrated lasing and showed a linewidth of 0.4 nm and a lasing threshold of 270 kW/cm2. In addition, printing of a distinct shape shows a high level of uniformity, demonstrated by a low spatial resolved full width half maximum variation over the whole printing area. These results reveal the possibilities of digital printed perovskite layers towards large-scale and low-cost laser applications of arbitrary shape.

20.
Appl Opt ; 56(28): 7774-7780, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29047760

RESUMO

We present the reduction of solution processed graphene oxide films by hydrogen iodide vapor. The films were studied by Raman spectroscopy and Fourier-transform infrared spectroscopy and its optoelectronic properties characterized. We obtained reduced graphene oxide films on polyethylene terephthalate flexible substrates with good electrical properties, 3.74×10-6 Ω·m, and high optical transmittance of 70% in the visible range. The fabricated layers contain graphene sheets with sizes up to ∼10 µm long and ∼6 µm wide. The presented solution, with highly concentrated processed graphene oxide, could be used as printing ink for manufacturing transparent and conductive electrodes on plastic substrates without the requirement of elevated temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...