Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Water Health ; 22(2): 372-384, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38421631

RESUMO

The study objective was to evaluate human faecal contamination impacts in the Yal-ku lagoon in the Mexican Caribbean and to estimate adenovirus infection and illness risks associated with recreational exposure during water activities. A total of 20 water samples (10 from each site × two sites) (50 L) were collected monthly over a period of 12 months from two selected sampling sites in the swimming area of the Yal-ku lagoon. The occurrence of faecal-associated viruses was explored, and human adenovirus (HAdV) and pepper mild mottle virus (PMMoV) concentrations were quantified. A quantitative microbial risk assessment (QMRA) model was used to estimate exposure and subsequent adenovirus infection and illness risk for 1 h of swimming or snorkelling. Somatic and F + -specific coliphages occurred in 100% of the samples. Both HAdV and PMMoV were detected at a 60% frequency thereby indicating persistent faecal inputs. PMMoV concentrations (44-370 GC/L) were relatively lower than the concentrations of HAdV (64-1,000 GC/L). Estimated mean adenovirus risks were greater for snorkelling than for swimming by roughly one to two orders of magnitude and estimated mean illness risks for snorkelling were >32/1,000. Human faecal contamination is frequent in the Yal-ku lagoon, which is associated with human gastrointestinal illness.


Assuntos
Infecções por Adenoviridae , Adenovírus Humanos , Tobamovirus , Humanos , Região do Caribe , Água , Sorbitol
2.
Plants (Basel) ; 12(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37299048

RESUMO

Induced systemic resistance (ISR) is a mechanism involved in the plant defense response against pathogens. Certain members of the Bacillus genus are able to promote the ISR by maintaining a healthy photosynthetic apparatus, which prepares the plant for future stress situations. The goal of the present study was to analyze the effect of the inoculation of Bacillus on the expression of genes involved in plant responses to pathogens, as a part of the ISR, during the interaction of Capsicum chinense infected with PepGMV. The effects of the inoculation of the Bacillus strains in pepper plants infected with PepGMV were evaluated by observing the accumulation of viral DNA and the visible symptoms of pepper plants during a time-course experiment in greenhouse and in in vitro experiments. The relative expression of the defense genes CcNPR1, CcPR10, and CcCOI1 were also evaluated. The results showed that the plants inoculated with Bacillus subtilis K47, Bacillus cereus K46, and Bacillus sp. M9 had a reduction in the PepGMV viral titer, and the symptoms in these plants were less severe compared to the plants infected with PepGMV and non-inoculated with Bacillus. Additionally, an increase in the transcript levels of CcNPR1, CcPR10, and CcCOI1 was observed in plants inoculated with Bacillus strains. Our results suggest that the inoculation of Bacillus strains interferes with the viral replication, through the increase in the transcription of pathogenesis-related genes, which is reflected in a lowered plant symptomatology and an improved yield in the greenhouse, regardless of PepGMV infection status.

3.
Food Environ Virol ; 13(4): 457-469, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34415553

RESUMO

The presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater has been reported as a result of fecal shedding of infected individuals. In this study, the occurrence of SARS-CoV-2 RNA was explored in primary-treated wastewater from two municipal wastewater treatment plants in Quintana Roo, Mexico, along with groundwater from sinkholes, a household well, and submarine groundwater discharges. Physicochemical variables were obtained in situ, and coliphage densities were determined. Three virus concentration methods based on adsorption-elution and sequential filtration were used followed by RNA isolation. Quantification of SARS-CoV-2 was done by RT-qPCR using the CDC 2020 assay, 2019-nCoV_N1 and 2019-nCoV_N2. The Pepper mild mottle virus, one of the most abundant RNA viruses in wastewater was quantified by RT-qPCR and compared to SARS-CoV-2 concentrations. The use of three combined virus concentration methods together with two qPCR assays allowed the detection of SARS-CoV-2 RNA in 58% of the wastewater samples analyzed, whereas none of the groundwater samples were positive for SARS-CoV-2 RNA. Concentrations of SARS-CoV-2 in wastewater were from 1.8 × 103 to 7.5 × 103 genome copies per liter (GC l-1), using the N1 RT-qPCR assay, and from 2.4 × 102 to 5.9 × 103 GC l-1 using the N2 RT-qPCR assay. Based on PMMoV prevalence detected in all wastewater and groundwater samples tested, the three viral concentration methods used could be successfully applied for SARS-CoV-2 RNA detection in further studies. This study represents the first detection of SARS-CoV-2 RNA in wastewater in southeast Mexico and provides a baseline for developing a wastewater-based epidemiology approach in the area.


Assuntos
COVID-19 , Água Subterrânea , Monitoramento Ambiental , Humanos , México , RNA Viral/genética , SARS-CoV-2 , Águas Residuárias
4.
Food Environ Virol ; 9(4): 487-497, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28646449

RESUMO

The Yucatan Peninsula of Mexico hosts a karst aquifer system that is the only source of freshwater for the area; however, it is vulnerable to human-mediated contamination. Pepper mild mottle virus (PMMoV) is one of the most abundant RNA viruses associated with human feces, making it a viable indicator for tracking fecal pollution in aquatic environments, including groundwater. In this study, groundwater samples collected from a karst aquifer from fresh and brackish water locations were analyzed for fecal indicator bacteria, somatic and male F+ specific coliphages, and PMMoV during the rainy and dry seasons. Total coliform bacteria were detected at all sites, whereas Escherichia coli were found at relatively low levels <40 MPN/100 ml. The highest average concentrations of somatic and male F+ specific coliphages were 920 and 330 plaque forming units per 100 ml, respectively, detected in freshwater during the rainy season. PMMoV RNA was detected in 85% of the samples with gene sequences sharing 99-100% of nucleotide identity with PMMoV sequences available in GenBank. Quantification of PMMoV genome copies (GC) by quantitative real-time PCR indicated concentrations ranging from 1.7 × 101 to 1.0 × 104 GC/L, with the highest number of GC detected during the rainy season. No significant correlation was observed between PMMoV occurrence by season or water type (p > 0.05). Physicochemical and indicator bacteria were not correlated with PMMoV concentrations. The abundance and prevalence of PMMoV in the karst aquifer may reflect its environmental persistence and its potential as a fecal indicator in this karst aquifer system.


Assuntos
Água Subterrânea/virologia , Tobamovirus/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fezes/microbiologia , Fezes/virologia , México , Reação em Cadeia da Polimerase em Tempo Real , Estações do Ano , Tobamovirus/classificação , Tobamovirus/genética
5.
Mol Genet Genomics ; 291(2): 819-30, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26606929

RESUMO

The type-h thioredoxins (TRXs) play a fundamental role in oxidative stress tolerance and defense responses against pathogens. In pepper plants, type-h TRXs participate in the defense mechanism against Cucumber mosaic virus. The goal of this study was to analyze the role of the CaTRXh1-cicy gene in pepper plants during compatible interaction with a DNA virus, the Euphorbia mosaic virus-Yucatan Peninsula (EuMV-YP). The effects of a transient silencing of the CaTRXh1-cicy gene in pepper plants wëre evaluated by observing the accumulation of viral DNA and the visible symptoms of pepper plants under different treatments. The accumulation of salicylic acid (SA) and the relative expression of the defense genes NPR1 and PR10 were also evaluated. Results showed that viral DNA accumulation was higher in transiently CaTRXh1-cicy silenced plants that were also infected with EuMV-YP. Symptoms in these plants were more severe compared to the non-silenced plants infected with EuMV-YP. The SA levels in the EuMV-YP-infected plants were rapidly induced at 1 h post infection (hpi) in comparison to the non-silenced plants inoculated with EuMV-YP. Additionally, in pepper plants infected with EuMV-YP, the expression of NPR1 decreased by up to 41 and 58 % at 28 days post infection (dpi) compared to the non-silenced pepper plants infected with only EuMV-YP and healthy non-inoculated pepper plants, respectively. PR10 gene expression decreased by up to 70 % at 28 dpi. Overall, the results indicate that the CaTRXh1-cicy gene participates in defense mechanisms during the compatible interaction of pepper plants with the EuMV-YP DNA virus.


Assuntos
Capsicum/genética , Doenças das Plantas/genética , Ácido Salicílico/metabolismo , Tiorredoxina h/biossíntese , Begomovirus/genética , Begomovirus/patogenicidade , Capsicum/virologia , Regulação da Expressão Gênica de Plantas , Redes e Vias Metabólicas , Tiorredoxina h/genética
6.
Arch Virol ; 160(6): 1593-619, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25894478

RESUMO

Viruses of the genus Begomovirus (family Geminiviridae) are emergent pathogens of crops throughout the tropical and subtropical regions of the world. By virtue of having a small DNA genome that is easily cloned, and due to the recent innovations in cloning and low-cost sequencing, there has been a dramatic increase in the number of available begomovirus genome sequences. Even so, most of the available sequences have been obtained from cultivated plants and are likely a small and phylogenetically unrepresentative sample of begomovirus diversity, a factor constraining taxonomic decisions such as the establishment of operationally useful species demarcation criteria. In addition, problems in assigning new viruses to established species have highlighted shortcomings in the previously recommended mechanism of species demarcation. Based on the analysis of 3,123 full-length begomovirus genome (or DNA-A component) sequences available in public databases as of December 2012, a set of revised guidelines for the classification and nomenclature of begomoviruses are proposed. The guidelines primarily consider a) genus-level biological characteristics and b) results obtained using a standardized classification tool, Sequence Demarcation Tool, which performs pairwise sequence alignments and identity calculations. These guidelines are consistent with the recently published recommendations for the genera Mastrevirus and Curtovirus of the family Geminiviridae. Genome-wide pairwise identities of 91 % and 94 % are proposed as the demarcation threshold for begomoviruses belonging to different species and strains, respectively. Procedures and guidelines are outlined for resolving conflicts that may arise when assigning species and strains to categories wherever the pairwise identity falls on or very near the demarcation threshold value.


Assuntos
Begomovirus/classificação , Begomovirus/genética , Genoma Viral/genética , Filogenia , Doenças das Plantas/virologia , Plantas/virologia , Alinhamento de Sequência
7.
Arch Virol ; 159(8): 2193-203, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24658781

RESUMO

The family Geminiviridae includes plant-infecting circular single-stranded DNA viruses that have geminate particle morphology. Members of this family infect both monocotyledonous and dicotyledonous plants and have a nearly global distribution. With the advent of new molecular tools and low-cost sequencing, there has been a significant increase in the discovery of new geminiviruses in various cultivated and non-cultivated plants. In this communication, we highlight the establishment of three new genera (Becurtovirus, Eragrovirus and Turncurtovirus) to accommodate various recently discovered geminiviruses that are highly divergent and, in some cases, have unique genome architectures. The genus Becurtovirus has two viral species, Beet curly top Iran virus (28 isolates; leafhopper vector Circulifer haematoceps) and Spinach curly top Arizona virus (1 isolate; unknown vector), whereas the genera Eragrovirus and Turncurtovirus each have a single assigned species: Eragrostis curvula streak virus (6 isolates; unknown vector) and Turnip curly top virus (20 isolates; leafhopper vector Circulifer haematoceps), respectively. Based on analysis of all of the genome sequences available in public databases for each of the three new genera, we provide guidelines and protocols for species and strain classification within these three new genera.


Assuntos
Geminiviridae/classificação , Doenças das Plantas/virologia , Plantas/virologia , Geminiviridae/genética , Geminiviridae/isolamento & purificação , Genoma Viral , Dados de Sequência Molecular , Filogenia
8.
Arch Virol ; 159(7): 1873-82, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24463952

RESUMO

Members of the genus Curtovirus (family Geminiviridae) are important pathogens of many wild and cultivated plant species. Until recently, relatively few full curtovirus genomes have been characterised. However, with the 19 full genome sequences now available in public databases, we revisit the proposed curtovirus species and strain classification criteria. Using pairwise identities coupled with phylogenetic evidence, revised species and strain demarcation guidelines have been instituted. Specifically, we have established 77 % genome-wide pairwise identity as a species demarcation threshold and 94 % genome-wide pairwise identity as a strain demarcation threshold. Hence, whereas curtovirus sequences with >77 % genome-wide pairwise identity would be classified as belonging to the same species, those sharing >94 % identity would be classified as belonging to the same strain. We provide step-by-step guidelines to facilitate the classification of newly discovered curtovirus full genome sequences and a set of defined criteria for naming new species and strains. The revision yields three curtovirus species: Beet curly top virus (BCTV), Spinach severe surly top virus (SpSCTV) and Horseradish curly top virus (HrCTV).


Assuntos
Geminiviridae/classificação , Geminiviridae/genética , Genoma Viral , Terminologia como Assunto
9.
Arch Virol ; 158(11): 2245-54, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23708296

RESUMO

A novel curtovirus, spinach severe curly top virus (SSCTV), was associated with symptomatic spinach plants collected from a commercial field in south-central Arizona during 2009. In addition, a second viral molecule of about 2.9 kb from the same spinach plants was amplified, cloned and sequenced. The latter isolate, herein named spinach curly top Arizona virus (SCTAV), was found to share 77 % pairwise sequence identity with beet curly top Iran virus (BCTIV), a leafhopper-transmitted geminivirus that has been assigned to the new genus Becurtovirus. The SCTAV genome encodes three viral-sense genes, V1, V2, and V3, and two complementary-sense genes, C1 and C2. There was no evidence for the presence of either a C3 or C4 ORF in the genome sequence. The genome organization of SCTAV is not like that of New World curtoviruses but instead is similar to that of BCTIV, which, to date, is only known to be present in Iran. Consistent with this observation, SCTAV and BCTIV both contain the unusual nonanucleotide TAAGATT/CC and a replication-associated protein, Rep (or C1), that is more closely related to the mastrevirus Rep than to those of curtoviruses reported to date. Both SSCTV and SCTAV were found to have a recombinant genome containing sequences (AY548948) derived from ancestral SCTV sequences in the virion-sense portions of the genome. Agroinoculation of Nicotiana benthamiana (Domin) plants with the cloned genome of SCTAV resulted in infection of 95 % of the plants and the development of severe curling symptoms, whereas only 20 % of the SSCTV-inoculated plants were infected, developing only mild curling symptoms. When plants were co-inoculated with both viruses, the frequency of infection remained higher for SCTAV than for SSCTV (80 % vs. 20 %), indicating no evidence of synergistic effects between the two viruses with respect to efficiency of infection.


Assuntos
Geminiviridae/genética , Doenças das Plantas/virologia , Recombinação Genética , Spinacia oleracea/virologia , Animais , Arizona , Beta vulgaris/virologia , Biologia Computacional/métodos , Geminiviridae/classificação , Geminiviridae/isolamento & purificação , Geminiviridae/patogenicidade , Genes Virais , Genoma Viral , Hemípteros/virologia , Irã (Geográfico) , Fases de Leitura Aberta , Filogenia , Nicotiana/virologia
10.
Virol J ; 7: 275, 2010 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-20958988

RESUMO

BACKGROUND: Euphorbia mosaic virus (EuMV) is a member of the SLCV clade, a lineage of New World begomoviruses that display distinctive features in their replication-associated protein (Rep) and virion-strand replication origin. The first entirely characterized EuMV isolate is native from Yucatan Peninsula, Mexico; subsequently, EuMV was detected in weeds and pepper plants from another region of Mexico, and partial DNA-A sequences revealed significant differences in their putative replication specificity determinants with respect to EuMV-YP. This study was aimed to investigate the replication compatibility between two EuMV isolates from the same country. RESULTS: A new isolate of EuMV was obtained from pepper plants collected at Jalisco, Mexico. Full-length clones of both genomic components of EuMV-Jal were biolistically inoculated into plants of three different species, which developed symptoms indistinguishable from those induced by EuMV-YP. Pseudorecombination experiments with EuMV-Jal and EuMV-YP genomic components demonstrated that these viruses do not form infectious reassortants in Nicotiana benthamiana, presumably because of Rep-iteron incompatibility. Sequence analysis of the EuMV-Jal DNA-B intergenic region (IR) led to the unexpected discovery of a 35-nt-long sequence that is identical to a segment of the rep gene in the cognate viral DNA-A. Similar short rep sequences ranging from 35- to 51-nt in length were identified in all EuMV isolates and in three distinct viruses from South America related to EuMV. These short rep sequences in the DNA-B IR are positioned downstream to a ~160-nt non-coding domain highly similar to the CP promoter of begomoviruses belonging to the SLCV clade. CONCLUSIONS: EuMV strains are not compatible in replication, indicating that this begomovirus species probably is not a replicating lineage in nature. The genomic analysis of EuMV-Jal led to the discovery of a subgroup of SLCV clade viruses that contain in the non-coding region of their DNA-B component, short rep gene sequences located downstream to a CP-promoter-like domain. This assemblage of DNA-A-related sequences within the DNA-B IR is reminiscent of polyomavirus microRNAs and could be involved in the posttranscriptional regulation of the cognate viral rep gene, an intriguing possibility that should be experimentally explored.


Assuntos
Begomovirus/fisiologia , DNA Intergênico , DNA Viral/genética , Doenças das Plantas/virologia , Replicação Viral , Begomovirus/genética , Begomovirus/isolamento & purificação , Capsicum/virologia , Sequência Conservada , DNA Viral/química , México , Dados de Sequência Molecular , Análise de Sequência de DNA , Homologia de Sequência , Nicotiana/virologia
11.
Virus Genes ; 39(3): 371-4, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19757008

RESUMO

The complete DNA-A component sequence of Desmodium leaf distortion virus (DeLDV, Begomovirus) isolated in Yucatan was determined to be 2569 nucleotides (nt) in length, and it was most closely related to Cotton leaf crumple virus-California (CLCrV-[Cal]), at 76%. The complete DNA-B component sequence was 2514 nt in length, and shared its highest nucleotide identity (60%) with Potato yellow mosaic Trinidad virus (PYMTV). Phylogenetic analyses group the DeLDV DNA-A component in the SLCV clade, whereas, the DeLDV DNA-B was grouped with the Abutilon mosaic virus clade, which also contains PYMV, suggesting that the DeLDV components have distinct evolutionary histories, possibly as the result of recombination and reassortment.


Assuntos
Begomovirus/classificação , Begomovirus/isolamento & purificação , Fabaceae/virologia , Doenças das Plantas/virologia , Begomovirus/genética , Análise por Conglomerados , DNA Viral/química , DNA Viral/genética , México , Filogenia , Análise de Sequência de DNA , Homologia de Sequência
12.
Virus Genes ; 35(3): 825-33, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17682933

RESUMO

A number of native and cultivated eudicots in the Yucatan Peninsula of Mexico (YPM) exhibit symptoms associated with virus infection. Symptomatic leaves were collected and assessed for begomoviral detection using polymerase chain reaction (PCR), and universal primers that amplify a fragment of the coat protein gene (core Cp). Begomovirus were detected in nine native and seven cultivated species, representing seven eudicot families. DNA extracts from the 16 hosts were used for PCR amplification and sequencing of a fragment containing the coat protein (Cp) gene. The complete Cp sequence was used to establish provisional species identification. Results indicated that 13 distinct begomovirus species were represented. Among these, five potentially new begomovirus species were identified, for which we propose the names Anoda golden mosaic virus (AnGMV), Boerhavia yellow spot virus (BoYSV), Papaya golden mosaic virus (PaGMV), Desmodium leaf distortion virus (DeLDV), and Hibiscus variegation virus (HiVV). Five previously described begomoviral species were provisionally identified for the first time in the YPM; these include Euphorbia mosaic virus (EuMV), Melon chlorotic leaf curl virus (MCLCuV), Okra yellow mosaic Mexico virus (OkYMMV), Sida golden mosaic virus (SiGMV), and Tobacco apical stunt virus (TbASV). Additionally, viruses previously reported from this region, Bean golden yellow mosaic virus (BGYMV), Pepper golden mosaic virus (PepGMV), and Tomato mottle virus (ToMoV) were provisionally identified in cultivated hosts. Phylogenetic analysis provisionally placed all isolates from the YPM in a Western Hemisphere begomovirus clade.


Assuntos
Begomovirus/classificação , Begomovirus/genética , Proteínas do Capsídeo/genética , Magnoliopsida/virologia , Filogenia , Doenças das Plantas/virologia , Begomovirus/isolamento & purificação , Análise por Conglomerados , DNA Viral/química , DNA Viral/genética , México , Dados de Sequência Molecular , Folhas de Planta/virologia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
13.
Virus Genes ; 35(2): 369-77, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17638064

RESUMO

Sida acuta and Corchorus siliquosus plants showing yellow mosaic and yellow vein symptoms, respectively, were collected in the Yucatan Peninsula, Mexico. Total DNA was isolated from both plant species and used for the amplification, cloning, and sequencing of the Begomovirus genome. Nucleotide comparison of the complete DNA-A component isolated from S. acuta and C. siliquosus confirmed the presence of two distinct begomoviruses species. Based on phenotypic symptoms observed in infected field plants, the names Sida yellow mosaic Yucatan virus (SiYMYuV) and Corchorus yellow vein Yucatan virus (CoYVYuV) were proposed. The SiYMYuV DNA-A shared the highest nucleotide identity (86%) with the Okra yellow mosaic Mexico virus (OkYMMV). The complete DNA-B component shared the highest nucleotide identity (80%) with CoYVYuV. The CoYVYuV DNA-A shared the highest nucleotide identity (84%) with SiYMYuV. The 166-nt common region (CR) sequence for the DNA-A and DNA-B components of SiYMYuV shared a high nucleotide identity of 99%, and the 151 nt of CoYVYuV CR shared 95% of nucleotide identity. The organization and the iterated sequence of the putative AC1 binding site (located within the common region) of both isolates, were similar to that of the begomoviruses of the Western Hemisphere. Phylogenetic analyses placed the DNA-A and DNA-B of SiYMYuV and CoYVYuV in the clade containing the Abutilon mosaic virus (AbMV).


Assuntos
Begomovirus/química , Begomovirus/genética , Corchorus/virologia , Malvaceae/virologia , Filogenia , Doenças das Plantas/virologia , Begomovirus/classificação , Genoma Viral , México , Dados de Sequência Molecular , Análise de Sequência de DNA
14.
Mol Biotechnol ; 31(2): 129-35, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16170213

RESUMO

A protocol is described for rapid DNA isolation from Malvaceae plant species and different tissues of Bixaceae that contain large amounts of polysaccharides, polyphenols, and pigments that interfere with DNA extractions. The method is a modification of Dellaporta et al. The current protocol is simple, and no phenol-chloroform extraction, ethanol, or isopropranol precipitation is required. The method is based in the incubation of soluble DNA with silica, mix in batch during the extraction. The procedure can be completed in 2 h and many samples can be processed at the same time. DNA of excellent quality was recovered and used for polymerase chain reaction (PCR) amplification, restriction enzyme digestion, and Southern blot analysis. The method was used with healthy Bixa orellana and virus-infected Malvaceae plants.


Assuntos
DNA de Plantas/isolamento & purificação , Células Vegetais , Plantas/genética , DNA de Plantas/genética , Eletroforese em Gel de Ágar , Genoma de Planta/genética , Reação em Cadeia da Polimerase , Mapeamento por Restrição , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...