Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984798

RESUMO

Metal-organic frameworks (MOFs) are porous materials with applications in gas separations and catalysis, but a lack of water stability often limits their practical use given the ubiquity of water. Consequently, it is useful to predict whether a MOF is water-stable before investing time and resources into synthesis. Existing heuristics for designing water-stable MOFs lack generality and limit the diversity of explored chemistry due to narrowly defined criteria. Machine learning (ML) models offer the promise to improve the generality of predictions but require data. In an improvement on previous efforts, we enlarge the available training data for MOF water stability prediction by over 400%, adding 911 MOFs with water stability labels assigned through semiautomated manuscript analysis to curate the new data set WS24. The additional data are shown to improve ML model performance (test ROC-AUC > 0.8) over diverse chemistry for the prediction of both water stability and stability in harsher acidic conditions. We illustrate how the expanded data set and models can be used with a previously developed activation stability model in combination with genetic algorithms to quickly screen ∼10,000 MOFs from a space of hundreds of thousands for candidates with multivariate stability (upon activation, in water, and in acid). We uncover metal- and geometry-specific design rules for robust MOFs. The data set and ML models developed in this work, which we disseminate through an easy-to-use web interface, are expected to contribute toward the accelerated discovery of novel, water-stable MOFs for applications such as direct air gas capture and water treatment.

2.
ACS Pharmacol Transl Sci ; 7(5): 1546-1556, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38751632

RESUMO

Growing evidence suggests that many bioactive molecules can nonspecifically modulate the physicochemical properties of membranes and influence the action of embedded membrane proteins. This study investigates the interactions of curcumin with protein-free model membranes consisting of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and DOPC with cholesterol (4/1 mol ratio). The focus is on the capability of curcumin to modify membrane barrier properties such as water permeability assayed through the droplet interface bilayer (DIB) model membrane. For pure DOPC, our findings show a concentration-dependent biphasic effect: a reduction in water permeability is observed at low concentrations (up to 2 mol %), whereas at high concentrations of curcumin, water permeability increases. In the presence of cholesterol, we observed an overall reduction in water permeability. A combination of complementary experimental methods, including phase transition parameters studied by differential scanning calorimetry (DSC) and structural properties measured by attenuated total reflectance (ATR)-FTIR, provides a deeper understanding of concentration-dependent interactions of curcumin with DOPC bilayers in the absence and presence of cholesterol. Our experimental findings align with a molecular mechanism of curcumin's interaction with model membranes, wherein its effect is contingent on its concentration. At low concentrations, curcumin binds to the lipid-water interface through hydrogen bonding with the phosphate headgroup, thereby obstructing the transport of water molecules. Conversely, at high concentrations, curcumin permeates the acyl chain region, inducing packing disorders and demonstrating evidence of phase separation. Enhanced knowledge of the impact of curcumin on membranes, which, in turn, can affect protein function, is likely to be beneficial for the successful translation of curcumin into effective medicine.

3.
J Phys Chem B ; 128(10): 2412-2424, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38417149

RESUMO

The effects that the main soy isoflavones, genistein and daidzein, have upon the biophysical properties of a model lipid bilayer composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or DOPC with cholesterol (4 to 1 mol ratio) have been investigated by transbilayer water permeability, differential scanning calorimetry, and confocal Raman microspectroscopy. Genistein is found to increase water permeability, decrease phase transition temperature, reduce enthalpy of transition, and induce packing disorder in the DOPC membrane with an increasing concentration. On the contrary, daidzein decreases water permeability and shows negligible impact on thermodynamic parameters and packing disorder at comparable concentrations. For a cholesterol-containing DOPC bilayer, both genistein and daidzein exhibit an overall less pronounced effect on transbilayer water permeability. Their respective differential abilities to modify the physical and structural properties of biomembranes with varying lipid compositions signify a complex and sensitive nature to isoflavone interactions, which depends on the initial state of bilayer packing and the differences in the molecular structures of these soy isoflavones, and provide insights in understanding the interactions of these molecules with cellular membranes.


Assuntos
Genisteína , Isoflavonas , Isoflavonas/farmacologia , Bicamadas Lipídicas/química , Colesterol , Água
4.
Langmuir ; 39(46): 16444-16456, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37939382

RESUMO

Aspirin has been used for broad therapeutic treatment, including secondary prevention of cardiovascular disease associated with increased cholesterol levels. Aspirin and other nonsteroidal anti-inflammatory drugs have been shown to interact with lipid membranes and change their biophysical properties. In this study, mixed lipid model bilayers made from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) or 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) comprising varying concentrations of cholesterol (10:1, 4:1, and 1:1 mole ratio of lipid:chol), prepared by the droplet interface bilayer method, were used to examine the effects of aspirin at various pH on transbilayer water permeability. The presence of aspirin increases the water permeability of POPC bilayers in a concentration-dependent manner, with a greater magnitude of increase at pH 3 compared to pH 7. In the presence of cholesterol, aspirin is similarly shown to increase water permeability; however, the extent of the increase depends on both the concentration of cholesterol and the pH, with the least pronounced enhancement in water permeability at high cholesterol levels at pH 7. A fusion of data from differential scanning calorimetry, confocal Raman microspectrophotometry, and interfacial tensiometric measurements demonstrates that aspirin can promote significant thermal, structural, and interfacial property perturbations in the mixed-lipid POPC or DOPC membranes containing cholesterol, indicating a disordering effect on the lipid membranes. Our findings suggest that aspirin fluidizes phosphocholine membranes in both cholesterol-free and cholesterol-enriched states and that the overall effect is greater when aspirin is in a neutral state. These results confer a deeper comprehension of the divergent effects of aspirin on biological membranes having heterogeneous compositions, under varying physiological pH and different cholesterol compositions, with implications for a better understanding of the gastrointestinal toxicity induced by the long term use of this important nonsteroidal anti-inflammatory molecule.


Assuntos
Aspirina , Fosfatidilcolinas , Aspirina/farmacologia , Fosfatidilcolinas/química , Colesterol/química , Bicamadas Lipídicas/química , Água , Anti-Inflamatórios , Concentração de Íons de Hidrogênio
5.
J Membr Biol ; 255(4-5): 575-590, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35748919

RESUMO

Resveratrol (RSV), a biologically active plant phenol, has been extensively investigated for cancer prevention and treatment due to its ability to regulate intracellular targets and signaling pathways which affect cell growth and metastasis. The non-specific interactions between RSV and cell membranes can modulate physical properties of membranes, which in turn can affect the conformation of proteins and perturb membrane-hosted biological functions. This study examines non-specific interactions of RSV with model membranes having varying concentrations of cholesterol (Chol), mimicking normal and cancerous cells. The perturbation of the model membrane by RSV is sensed by changes in water permeability parameters, using Droplet Interface Bilayer (DIB) models, thermotropic properties from Differential Scanning Calorimetry, and structural properties from confocal Raman spectroscopy, all of which are techniques not complicated by the use of probes which may themselves perturb the membrane. The nature and extent of interactions greatly depend on the presence and absence of Chol as well as the concentration of RSV. Our results indicate that the presence of RSV decreases water permeability of lipid membranes composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), indicating a capability for RSV in stiffening fluidic membranes. When Chol is present, however, (at 4:1 and 2:1 mol ratio DOPC to cholesterol), the addition of RSV has no significant effect upon the water permeability. DSC thermograms show that RSV interacts with DOPC and DOPC/Chol bilayers and influences their thermotropic phase behavior in a concentration-dependent manner, by decreasing the main phase transition temperature and enthalpy, with a phase separation shown at the higher concentrations of RSV. Raman spectroscopic studies indicate an ordering effect of RSV on DOPC supported bilayer, with a lesser extent of ordering in the presence of Chol. Combined results from these investigations highlight a differential effect of RSV on Chol-free and Chol-enriched membranes, respectively, which results constitute a bellwether for increased understanding and effective use of resveratrol in disease therapy including cancer.


Assuntos
1,2-Dipalmitoilfosfatidilcolina , Bicamadas Lipídicas , 1,2-Dipalmitoilfosfatidilcolina/química , Resveratrol/farmacologia , Bicamadas Lipídicas/química , Água , Espectroscopia de Infravermelho com Transformada de Fourier , Colesterol/química , Varredura Diferencial de Calorimetria , Permeabilidade , Fosfatidilcolinas
6.
ACS Chem Neurosci ; 13(7): 1046-1054, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35298887

RESUMO

Cannabidiol (CBD), the major nonpsychoactive component of plant-derived cannabinoids, has been reported to have a broad range of potential beneficial pharmacological effects on the central nervous system (CNS). In this study, the droplet interface bilayer, a model cell membrane, is used to examine the effects of CBD on passive water permeability, a fundamental membrane biophysical property. The presence of CBD decreases the water permeability of model lipid membranes composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and at low concentrations of cholesterol (Chol) (20 mol %) in DOPC, whereas when higher concentrations of Chol are present (33 mol %), CBD has an opposing effect, increasing water permeability. The diametric effect in water permeability change upon addition of CBD to Chol-low and Chol-high bilayers signifies a variant interaction of CBD, depending on the initial state of bilayer packing and fluidity. Additionally, differential scanning calorimetry studies provide evidence that there are selective changes in thermotropic behavior for CBD with DOPC and with DOPC/Chol membranes, respectively, supportive of these varying membrane interactions of CBD dependent upon cholesterol. The intriguing ability of CBD to sensitively respond to membrane Chol concentrations in modifying physical properties highlights the significant impact that CBD can have on heterogeneous biomembranes including those of the CNS, the neurons of which are enriched in Chol to a point where up to a quarter of the body's total Chol is in the brain, and defective brain Chol homeostasis is implicated in neurodegenerative diseases.


Assuntos
Canabidiol , Bicamadas Lipídicas , Varredura Diferencial de Calorimetria , Canabidiol/farmacologia , Membrana Celular/metabolismo , Colesterol/metabolismo , Bicamadas Lipídicas/metabolismo , Fosfatidilcolinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...