Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(2): e0263328, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35143540

RESUMO

Patients on dialysis are at risk of severe course of SARS-CoV-2 infection. Understanding the neutralizing activity and coverage of SARS-CoV-2 variants of vaccine-elicited antibodies is required to guide prophylactic and therapeutic COVID-19 interventions in this frail population. By analyzing plasma samples from 130 hemodialysis and 13 peritoneal dialysis patients after two doses of BNT162b2 or mRNA-1273 vaccines, we found that 35% of the patients had low-level or undetectable IgG antibodies to SARS-CoV-2 Spike (S). Neutralizing antibodies against the vaccine-matched SARS-CoV-2 and Delta variant were low or undetectable in 49% and 77% of patients, respectively, and were further reduced against other emerging variants. The fraction of non-responding patients was higher in SARS-CoV-2-naïve hemodialysis patients immunized with BNT162b2 (66%) than those immunized with mRNA-1273 (23%). The reduced neutralizing activity correlated with low antibody avidity. Patients followed up to 7 months after vaccination showed a rapid decay of the antibody response with an average 21- and 10-fold reduction of neutralizing antibodies to vaccine-matched SARS-CoV-2 and Delta variant, which increased the fraction of non-responders to 84% and 90%, respectively. These data indicate that dialysis patients should be prioritized for additional vaccination boosts. Nevertheless, their antibody response to SARS-CoV-2 must be continuously monitored to adopt the best prophylactic and therapeutic strategy.


Assuntos
Anticorpos Neutralizantes/imunologia , Testes de Neutralização , Diálise Renal , SARS-CoV-2/imunologia , Vacinação , Animais , Anticorpos Neutralizantes/sangue , Afinidade de Anticorpos , Células CHO , Vacinas contra COVID-19/imunologia , Estudos de Casos e Controles , Cricetulus , Relação Dose-Resposta Imunológica , Seguimentos , Células HEK293 , Humanos , Imunoglobulina G/sangue , Fatores de Risco , Vacinas de mRNA/imunologia
2.
Nature ; 597(7874): 97-102, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34261126

RESUMO

An ideal therapeutic anti-SARS-CoV-2 antibody would resist viral escape1-3, have activity against diverse sarbecoviruses4-7, and be highly protective through viral neutralization8-11 and effector functions12,13. Understanding how these properties relate to each other and vary across epitopes would aid the development of therapeutic antibodies and guide vaccine design. Here we comprehensively characterize escape, breadth and potency across a panel of SARS-CoV-2 antibodies targeting the receptor-binding domain (RBD). Despite a trade-off between in vitro neutralization potency and breadth of sarbecovirus binding, we identify neutralizing antibodies with exceptional sarbecovirus breadth and a corresponding resistance to SARS-CoV-2 escape. One of these antibodies, S2H97, binds with high affinity across all sarbecovirus clades to a cryptic epitope and prophylactically protects hamsters from viral challenge. Antibodies that target the angiotensin-converting enzyme 2 (ACE2) receptor-binding motif (RBM) typically have poor breadth and are readily escaped by mutations despite high neutralization potency. Nevertheless, we also characterize a potent RBM antibody (S2E128) with breadth across sarbecoviruses related to SARS-CoV-2 and a high barrier to viral escape. These data highlight principles underlying variation in escape, breadth and potency among antibodies that target the RBD, and identify epitopes and features to prioritize for therapeutic development against the current and potential future pandemics.


Assuntos
Anticorpos Amplamente Neutralizantes/imunologia , COVID-19/virologia , Reações Cruzadas/imunologia , Evasão da Resposta Imune , SARS-CoV-2/classificação , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Idoso , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Afinidade de Anticorpos , Anticorpos Amplamente Neutralizantes/química , COVID-19/imunologia , Vacinas contra COVID-19/química , Vacinas contra COVID-19/imunologia , Linhagem Celular , Cricetinae , Epitopos de Linfócito B/química , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Feminino , Humanos , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , Masculino , Mesocricetus , Pessoa de Meia-Idade , Modelos Moleculares , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Vacinologia , Tratamento Farmacológico da COVID-19
3.
bioRxiv ; 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33851154

RESUMO

An ideal anti-SARS-CoV-2 antibody would resist viral escape 1-3 , have activity against diverse SARS-related coronaviruses 4-7 , and be highly protective through viral neutralization 8-11 and effector functions 12,13 . Understanding how these properties relate to each other and vary across epitopes would aid development of antibody therapeutics and guide vaccine design. Here, we comprehensively characterize escape, breadth, and potency across a panel of SARS-CoV-2 antibodies targeting the receptor-binding domain (RBD), including S309 4 , the parental antibody of the late-stage clinical antibody VIR-7831. We observe a tradeoff between SARS-CoV-2 in vitro neutralization potency and breadth of binding across SARS-related coronaviruses. Nevertheless, we identify several neutralizing antibodies with exceptional breadth and resistance to escape, including a new antibody (S2H97) that binds with high affinity to all SARS-related coronavirus clades via a unique RBD epitope centered on residue E516. S2H97 and other escape-resistant antibodies have high binding affinity and target functionally constrained RBD residues. We find that antibodies targeting the ACE2 receptor binding motif (RBM) typically have poor breadth and are readily escaped by mutations despite high neutralization potency, but we identify one potent RBM antibody (S2E12) with breadth across sarbecoviruses closely related to SARS-CoV-2 and with a high barrier to viral escape. These data highlight functional diversity among antibodies targeting the RBD and identify epitopes and features to prioritize for antibody and vaccine development against the current and potential future pandemics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...