Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Phys Chem A ; 116(24): 6264-81, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22483091

RESUMO

An important chemical sink for organic peroxy radicals (RO(2)) in the troposphere is reaction with hydroperoxy radicals (HO(2)). Although this reaction is typically assumed to form hydroperoxides as the major products (R1a), acetyl peroxy radicals and acetonyl peroxy radicals have been shown to undergo other reactions (R1b) and (R1c) with substantial branching ratios: RO(2) + HO(2) → ROOH + O(2) (R1a), RO(2) + HO(2) → ROH + O(3) (R1b), RO(2) + HO(2) → RO + OH + O(2) (R1c). Theoretical work suggests that reactions (R1b) and (R1c) may be a general feature of acyl peroxy and α-carbonyl peroxy radicals. In this work, branching ratios for R1a-R1c were derived for six carbonyl-containing peroxy radicals: C(2)H(5)C(O)O(2), C(3)H(7)C(O)O(2), CH(3)C(O)CH(2)O(2), CH(3)C(O)CH(O(2))CH(3), CH(2)ClCH(O(2))C(O)CH(3), and CH(2)ClC(CH(3))(O(2))CHO. Branching ratios for reactions of Cl-atoms with butanal, butanone, methacrolein, and methyl vinyl ketone were also measured as a part of this work. Product yields were determined using a combination of long path Fourier transform infrared spectroscopy, high performance liquid chromatography with fluorescence detection, gas chromatography with flame ionization detection, and gas chromatography-mass spectrometry. The following branching ratios were determined: C(2)H(5)C(O)O(2), Y(R1a) = 0.35 ± 0.1, Y(R1b) = 0.25 ± 0.1, and Y(R1c) = 0.4 ± 0.1; C(3)H(7)C(O)O(2), Y(R1a) = 0.24 ± 0.15, Y(R1b) = 0.29 ± 0.1, and Y(R1c) = 0.47 ± 0.15; CH(3)C(O)CH(2)O(2), Y(R1a) = 0.75 ± 0.13, Y(R1b) = 0, and Y(R1c) = 0.25 ± 0.13; CH(3)C(O)CH(O(2))CH(3), Y(R1a) = 0.42 ± 0.1, Y(R1b) = 0, and Y(R1c) = 0.58 ± 0.1; CH(2)ClC(CH(3))(O(2))CHO, Y(R1a) = 0.2 ± 0.2, Y(R1b) = 0, and Y(R1c) = 0.8 ± 0.2; and CH(2)ClCH(O(2))C(O)CH(3), Y(R1a) = 0.2 ± 0.1, Y(R1b) = 0, and Y(R1c) = 0.8 ± 0.2. The results give insights into possible mechanisms for cycling of OH radicals in the atmosphere.


Assuntos
Peróxidos/química , Radicais Livres/síntese química , Radicais Livres/química , Peróxidos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...