Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 11(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36918221

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T-cell therapies have demonstrated transformational outcomes in the treatment of B-cell malignancies, but their widespread use is hindered by technical and logistical challenges associated with ex vivo cell manufacturing. To overcome these challenges, we developed VivoVec, a lentiviral vector-based platform for in vivo engineering of T cells. UB-VV100, a VivoVec clinical candidate for the treatment of B-cell malignancies, displays an anti-CD3 single-chain variable fragment (scFv) on the surface and delivers a genetic payload that encodes a second-generation CD19-targeted CAR along with a rapamycin-activated cytokine receptor (RACR) system designed to overcome the need for lymphodepleting chemotherapy in supporting successful CAR T-cell expansion and persistence. In the presence of exogenous rapamycin, non-transduced immune cells are suppressed, while the RACR system in transduced cells converts rapamycin binding to an interleukin (IL)-2/IL-15 signal to promote proliferation. METHODS: UB-VV100 was administered to peripheral blood mononuclear cells (PBMCs) from healthy donors and from patients with B-cell malignancy without additional stimulation. Cultures were assessed for CAR T-cell transduction and function. Biodistribution was evaluated in CD34-humanized mice and in canines. In vivo efficacy was evaluated against normal B cells in CD34-humanized mice and against systemic tumor xenografts in PBMC-humanized mice. RESULTS: In vitro, administration of UB-VV100 resulted in dose-dependent and anti-CD3 scFv-dependent T-cell activation and CAR T-cell transduction. The resulting CAR T cells exhibited selective expansion in rapamycin and antigen-dependent activity against malignant B-cell targets. In humanized mouse and canine studies, UB-VV100 demonstrated a favorable biodistribution profile, with transduction events limited to the immune compartment after intranodal or intraperitoneal administration. Administration of UB-VV100 to humanized mice engrafted with B-cell tumors resulted in CAR T-cell transduction, expansion, and elimination of systemic malignancy. CONCLUSIONS: These findings demonstrate that UB-VV100 generates functional CAR T cells in vivo, which could expand patient access to CAR T technology in both hematological and solid tumors without the need for ex vivo cell manufacturing.


Assuntos
Receptores de Antígenos Quiméricos , Linfócitos T , Humanos , Animais , Cães , Camundongos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos de Linfócitos T , Leucócitos Mononucleares , Distribuição Tecidual , Engenharia Celular/métodos
2.
Mol Cancer Res ; 17(1): 321-331, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30224545

RESUMO

The incidence of prostate cancer is directly linked to age, but age-associated changes that facilitate prostate cancer development and progression are poorly understood. This study investigated age-related changes in the prostate microenvironment for their influence on prostate cancer behavior. Prostate cancer cells implanted orthotopically into the prostate demonstrated accelerated tumor growth in aged compared with young mice. Metastatic lesions following intravenous injection were also more numerous in aged mice. Tumors from young and aged mice showed no significant differences concerning their proliferation index, apoptosis, or angiogenesis. However, analysis of tumor-infiltrating immune cells by IHC and RNA sequencing (RNA-seq) revealed elevated numbers of macrophages in prostates from aged mice, which are quickly polarized towards a phenotype resembling protumorigenic tumor-associated macrophages upon tumor cell engraftment. Older patients with prostate cancer (>60 years old) in The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) dataset displayed higher expression of macrophage markers (CD163 and VSIG4) which associated with higher rates of biochemical relapse. Remodeling of the collagenous extracellular matrix (ECM) was associated with prostate cancer growth and invasion in the aged microenvironment. Moreover, the collagen matrix extracted from aged mice enhanced the invasiveness and proliferation of prostate cancer cells in vitro. Together, these results demonstrate that the aged prostatic microenvironment can regulate the growth and metastasis of malignant prostate cells, highlighting the role of resident macrophages and their polarization towards a protumorigenic phenotype, along with remodeling of the ECM. IMPLICATIONS: These findings demonstrate the importance of age-associated tumor microenvironment alterations in regulating key aspects of prostate cancer progression.


Assuntos
Células Epiteliais/metabolismo , Neoplasias da Próstata/genética , Animais , Carcinogênese/patologia , Humanos , Masculino , Camundongos , Neoplasias da Próstata/patologia , Microambiente Tumoral
3.
Mol Cancer Res ; 13(2): 339-47, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25298407

RESUMO

UNLABELLED: Human prostate cancer is known to harbor recurrent genomic aberrations consisting of chromosomal losses, gains, rearrangements, and mutations that involve oncogenes and tumor suppressors. Genetically engineered mouse (GEM) models have been constructed to assess the causal role of these putative oncogenic events and provide molecular insight into disease pathogenesis. While GEM models generally initiate neoplasia by manipulating a single gene, expression profiles of GEM tumors typically comprise hundreds of transcript alterations. It is unclear whether these transcriptional changes represent the pleiotropic effects of single oncogenes, and/or cooperating genomic or epigenomic events. Therefore, it was determined whether structural chromosomal alterations occur in GEM models of prostate cancer and whether the changes are concordant with human carcinomas. Whole genome array-based comparative genomic hybridization (CGH) was used to identify somatic chromosomal copy number aberrations (SCNA) in the widely used TRAMP, Hi-Myc, Pten-null, and LADY GEM models. Interestingly, very few SCNAs were identified and the genomic architecture of Hi-Myc, Pten-null, and LADY tumors were essentially identical to the germline. TRAMP neuroendocrine carcinomas contained SCNAs, which comprised three recurrent aberrations including a single copy loss of chromosome 19 (encoding Pten). In contrast, cell lines derived from the TRAMP, Hi-Myc, and Pten-null tumors were notable for numerous SCNAs that included copy gains of chromosome 15 (encoding Myc) and losses of chromosome 11 (encoding p53). IMPLICATIONS: Chromosomal alterations are not a prerequisite for tumor formation in GEM prostate cancer models and cooperating events do not naturally occur by mechanisms that recapitulate changes in genomic integrity as observed in human prostate cancer.


Assuntos
Adenocarcinoma/genética , Adenocarcinoma/patologia , Cromossomos de Mamíferos/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Animais , Linhagem Celular Tumoral , Aberrações Cromossômicas , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais
4.
Cancer Discov ; 4(11): 1310-25, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25122198

RESUMO

UNLABELLED: TMPRSS2 is an androgen-regulated cell-surface serine protease expressed predominantly in prostate epithelium. TMPRSS2 is expressed highly in localized high-grade prostate cancers and in the majority of human prostate cancer metastases. Through the generation of mouse models with a targeted deletion of Tmprss2, we demonstrate that the activity of this protease regulates cancer cell invasion and metastasis to distant organs. By screening combinatorial peptide libraries, we identified a spectrum of TMPRSS2 substrates that include pro-hepatocyte growth factor (HGF). HGF activated by TMPRSS2 promoted c-MET receptor tyrosine kinase signaling, and initiated a proinvasive epithelial-to-mesenchymal transition phenotype. Chemical library screens identified a potent bioavailable TMPRSS2 inhibitor that suppressed prostate cancer metastasis in vivo. Together, these findings provide a mechanistic link between androgen-regulated signaling programs and prostate cancer metastasis that operate via context-dependent interactions with extracellular constituents of the tumor microenvironment. SIGNIFICANCE: The vast majority of prostate cancer deaths are due to metastasis. Loss of TMPRSS2 activity dramatically attenuated the metastatic phenotype through mechanisms involving the HGF-c-MET axis. Therapeutic approaches directed toward inhibiting TMPRSS2 may reduce the incidence or progression of metastasis in patients with prostate cancer.


Assuntos
Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Serina Endopeptidases/metabolismo , Androgênios/metabolismo , Animais , Linhagem Celular Tumoral , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Masculino , Camundongos Knockout , Camundongos SCID , Biblioteca de Peptídeos , Proteólise , Proteínas Proto-Oncogênicas c-met/metabolismo , Receptores Androgênicos/metabolismo , Microambiente Tumoral
5.
Sleep ; 33(9): 1147-57, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20857860

RESUMO

STUDY OBJECTIVES: The sleep-deprivation-induced changes in delta power, an electroencephalographical correlate of sleep need, and brain transcriptome profiles have importantly contributed to current hypotheses on sleep function. Because sleep deprivation also induces stress, we here determined the contribution of the corticosterone component of the stress response to the electrophysiological and molecular markers of sleep need in mice. DESIGN: N/A SETTINGS: Mouse sleep facility. PARTICIPANTS: C57BL/6J, AKR/J, DBA/2J mice. INTERVENTIONS: Sleep deprivation, adrenalectomy (ADX). MEASUREMENTS AND RESULTS: Sleep deprivation elevated corticosterone levels in 3 inbred strains, but this increase was larger in DBA/2J mice; i.e., the strain for which the rebound in delta power after sleep deprivation failed to reach significance. Elimination of the sleep-deprivation-associated corticosterone surge through ADX in DBA/2J mice did not, however, rescue the delta power rebound but did greatly reduce the number of transcripts affected by sleep deprivation. Genes no longer affected by sleep deprivation cover pathways previously implicated in sleep homeostasis, such as lipid, cholesterol (e.g., Ldlr, Hmgcs1, Dhcr7, -24, Fkbp5), energy and carbohydrate metabolism (e.g., Eno3, G6pc3, Mpdu1, Ugdh, Man1b1), protein biosynthesis (e.g., Sgk1, Alad, Fads3, Eif2c2, -3, Mat2a), and some circadian genes (Per1, -3), whereas others, such as Homer1a, remained unchanged. Moreover, several microRNAs were affected both by sleep deprivation and ADX. CONCLUSIONS: Our findings indicate that corticosterone contributes to the sleep-deprivation-induced changes in brain transcriptome that have been attributed to wakefulness per se. The study identified 78 transcripts that respond to sleep loss independent of corticosterone and time of day, among which genes involved in neuroprotection prominently feature, pointing to a molecular pathway directly relevant for sleep function.


Assuntos
Glucocorticoides/fisiologia , Homeostase/fisiologia , Privação do Sono/etiologia , Vigília/fisiologia , Adrenalectomia , Animais , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Corticosterona/metabolismo , Modelos Animais de Doenças , Eletroencefalografia , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos , RNA Mensageiro/metabolismo , Privação do Sono/metabolismo , Privação do Sono/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...