Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Microbiol ; 67(2): 249-264, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29293082

RESUMO

PURPOSE: Recently, the strong antiviral activity of an Actinobacillus pleuropneumoniae (App) culture supernatant against porcine reproductive and respiratory syndrome virus (PRRSV) was discovered. Following this finding, the objective of the present study was to understand how the App culture supernatant inhibits PRRSV replication in its natural targeted host cells, i.e. porcine alveolar macrophages (PAMs). METHODOLOGY: Several assays were conducted with App culture supernatant-treated PRRSV-infected cell lines, such as PAM, St-Jude porcine lung and MARC-145 cells. RT-qPCR assays were used to determine the expression levels of type I and II IFN mRNAs, viral genomic (gRNA) and sub-genomic RNAs (sgRNAs). Proteomic, Western blot and immunofluorescence assays were conducted to determine the involvement of actin filaments in the App culture supernatant antiviral effect.Results/Key findings. Type I and II IFN mRNA expressions were not upregulated by the App culture supernatant. Time courses of gRNA and sgRNA expression levels demonstrated that the App culture supernatant inhibits PRRSV infection before the first viral transcription cycle. Western blot experiments confirmed an increase in the expression of cofilin (actin cytoskeleton dynamics regulator) and immunofluorescence also demonstrated a significant decrease of actin filaments in App culture supernatant-treated PRRSV-infected PAM cells. App culture supernatant antiviral activity was also demonstrated against other PRRSV strains of genotypes I and II. CONCLUSION: App culture supernatant antiviral effect against PRRSV takes place early during PRRSV infection. Results suggest that App culture supernatant antiviral effect may take place via the activation of cofilin, which induces actin depolymerization and subsequently, probably affects PRRSV endocytosis. Other experiments are needed to fully validate this latest hypothesis.


Assuntos
Actinobacillus pleuropneumoniae/fisiologia , Actinas/metabolismo , Antivirais/farmacologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Replicação Viral/efeitos dos fármacos , Animais , Antibiose , Linhagem Celular , Meios de Cultura/química , Genoma Viral , Interferon Tipo I/genética , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Reação em Cadeia da Polimerase em Tempo Real , Suínos , Transcrição Gênica/efeitos dos fármacos
2.
PLoS One ; 9(5): e98434, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24878741

RESUMO

Pigs are often colonized by more than one bacterial and/or viral species during respiratory tract infections. This phenomenon is known as the porcine respiratory disease complex (PRDC). Actinobacillus pleuropneumoniae (App) and porcine reproductive and respiratory syndrome virus (PRRSV) are pathogens that are frequently involved in PRDC. The main objective of this project was to study the in vitro interactions between these two pathogens and the host cells in the context of mixed infections. To fulfill this objective, PRRSV permissive cell lines such as MARC-145, SJPL, and porcine alveolar macrophages (PAM) were used. A pre-infection with PRRSV was performed at 0.5 multiplicity of infection (MOI) followed by an infection with App at 10 MOI. Bacterial adherence and cell death were compared. Results showed that PRRSV pre-infection did not affect bacterial adherence to the cells. PRRSV and App co-infection produced an additive cytotoxicity effect. Interestingly, a pre-infection of SJPL and PAM cells with App blocked completely PRRSV infection. Incubation of SJPL and PAM cells with an App cell-free culture supernatant is also sufficient to significantly block PRRSV infection. This antiviral activity is not due to LPS but rather by small molecular weight, heat-resistant App metabolites (<1 kDa). The antiviral activity was also observed in SJPL cells infected with swine influenza virus but to a much lower extent compared to PRRSV. More importantly, the PRRSV antiviral activity of App was also seen with PAM, the cells targeted by the virus in vivo during infection in pigs. The antiviral activity might be due, at least in part, to the production of interferon γ. The use of in vitro experimental models to study viral and bacterial co-infections will lead to a better understanding of the interactions between pathogens and their host cells, and could allow the development of novel prophylactic and therapeutic tools.


Assuntos
Actinobacillus pleuropneumoniae/fisiologia , Antivirais/metabolismo , Síndrome Respiratória e Reprodutiva Suína/microbiologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Animais , Linhagem Celular , Chlorocebus aethiops , Coinfecção/microbiologia , Coinfecção/virologia , Interferon gama/metabolismo , Macrófagos Alveolares/microbiologia , Macrófagos Alveolares/virologia , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Suínos , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...