Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 17(42): 28121-8, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25772332

RESUMO

Size-selected 9 nm PtxY nanoparticles have recently shown an outstanding catalytic activity for the oxygen reduction reaction, representing a promising cathode catalyst for proton exchange membrane fuel cells (PEMFCs). Studying their electrochemical dealloying is a fundamental step towards the understanding of both their activity and stability. Herein, size-selected 9 nm PtxY nanoparticles have been deposited on the cathode side of a PEMFC specifically designed for in situ ambient pressure X-ray photoelectron spectroscopy (APXPS). The dealloying mechanism was followed in situ for the first time. It proceeds through the progressive oxidation of alloyed Y atoms, soon leading to the accumulation of Y(3+) cations at the cathode. Acid leaching with sulfuric acid is capable of accelerating the dealloying process and removing these Y(3+) cations which might cause long term degradation of the membrane. The use of APXPS under near operating conditions allowed observing the population of oxygenated surface species as a function of the electrochemical potential. Similar to the case of pure Pt nanoparticles, non-hydrated hydroxide plays a key role in the ORR catalytic process.

2.
Nat Chem ; 6(8): 732-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25054945

RESUMO

Low-temperature fuel cells are limited by the oxygen reduction reaction, and their widespread implementation in automotive vehicles is hindered by the cost of platinum, currently the best-known catalyst for reducing oxygen in terms of both activity and stability. One solution is to decrease the amount of platinum required, for example by alloying, but without detrimentally affecting its properties. The alloy PtxY is known to be active and stable, but its synthesis in nanoparticulate form has proved challenging, which limits its further study. Herein we demonstrate the synthesis, characterization and catalyst testing of model PtxY nanoparticles prepared through the gas-aggregation technique. The catalysts reported here are highly active, with a mass activity of up to 3.05 A mgPt(-1) at 0.9 V versus a reversible hydrogen electrode. Using a variety of characterization techniques, we show that the enhanced activity of PtxY over elemental platinum results exclusively from a compressive strain exerted on the platinum surface atoms by the alloy core.


Assuntos
Nanopartículas Metálicas/química , Oxigênio/química , Platina/química , Ligas/química , Catálise , Eletrodos , Gases/química , Oxirredução , Tamanho da Partícula
3.
Phys Chem Chem Phys ; 16(48): 26506-13, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25047100

RESUMO

Mass-selected nanoparticles can be conveniently produced using magnetron sputtering and aggregation techniques. However, numerous pitfalls can compromise the quality of the samples, e.g. double or triple mass production, dendritic structure formation or unpredicted particle composition. We stress the importance of transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and ion scattering spectroscopy (ISS) for verifying the morphology, size distribution and chemical composition of the nanoparticles. Furthermore, we correlate the morphology and the composition of the PtxY nanoparticles with their catalytic properties for the oxygen reduction reaction. Finally, we propose a completely general diagnostic method, which allows us to minimize the occurrence of undesired masses.

5.
Langmuir ; 27(15): 9621-9, 2011 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-21739936

RESUMO

Functionalized carbon nanotubes were used as a support for PtCo nanoparticles. Their performance as electrocatalysts for the electrooxidation of methanol was evaluated by cyclic voltammetry and in situ FTIR reflectance spectroscopy. The onset potentials for both the electrooxidation of methanol and the production of CO(2) shifted to less positive values for catalysts prepared with more oxygen groups on the support. Furthermore, the production of CO(2) was higher on catalysts prepared with functionalized carbon nanotubes. The functional groups play two different but complementary roles. On the one hand, they help to stabilize smaller PtCo particles of ca. 3 nm. On the other hand, they provide the -OH groups necessary for the total oxidation of methanol to CO(2) at potentials less positive than on nonfunctionalized supports. Remarkably, the consumption of carboxylic acid groups along with the production of water is observed in the infrared spectra of the functionalized supports recorded during the electrooxidation of methanol. This observation suggests that the -OH groups of the support can also react with methanol, forming water and an ester.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA