RESUMO
Environmental legislation in Ecuador is advancing with the legitimate aspiration of providing citizens with new standards of quality and environmental health. In the context of environmental noise, these legislative advances are based on the experience accumulated in other countries, which is an advantage that must be managed with caution by incorporating local factors into noise management procedures. This study advances two lines of work. The first is to survey the population about their attitude towards noise from a major road to try to detect local factors in the annoyance and sleep disturbances. The second uses this information to compare noise indicators for the detection and ranking of hot-spots from major roads. The interviewees exhibited a high level of annoyance and sleep disturbance due to noise compared with the results of other studies. Results show that there are small differences in the definition of hot-spots when using WHO's dose-response curves for Lden ≥ 68 dB for and for Lnight ≥ 58 dB, in comparison with the curves generated in this study (CS). Regarding the application of both dose-response curves (WHO vs. CS) to the estimation of the population at risk of the harmful effect of nighttime traffic noise (HSD), small oscillations are also observed even when Lnight ≥ 58 dB and Lnoche ≥ 60 dB are used.
Assuntos
Ruído dos Transportes , Transtornos do Sono-Vigília , Equador , Exposição Ambiental , Humanos , Ruído dos Transportes/efeitos adversos , Transtornos do Sono-Vigília/epidemiologia , Inquéritos e QuestionáriosRESUMO
The acoustic environment has been pointed out as a possible distractor during student activities in the online academic modality; however, it has not been specifically studied, nor has it been studied in relation to parameters frequently used in academic-quality evaluations. The objective of this study is to characterize the acoustic environment and relate it to students' satisfaction with the online learning modality. For that, three artificial neural networks were calculated, using as target variables the students' satisfaction and the noise interference with autonomous and synchronous activities, using acoustic variables as predictors. The data were obtained during the COVID-19 lockdown, through an online survey addressed to the students of the Universidad de Las Américas (Quito, Ecuador). Results show that the noise interference with comprehensive reading or with making exams and that the frequency of noises, which made the students lose track of the lesson, were relevant factors for students' satisfaction. The perceived loudness also had a remarkable influence on engaging in autonomous and synchronous activities. The performance of the models on students' satisfaction and on the noise interference with autonomous and synchronous activities was satisfactory given that it was built only with acoustic variables, with correlation coefficients of 0.567, 0.853, and 0.865, respectively.
Assuntos
COVID-19 , Educação a Distância , Humanos , Universidades , COVID-19/epidemiologia , Controle de Doenças Transmissíveis , Estudantes , Satisfação PessoalRESUMO
Low frequency noises are predominant in neonatal intensive care units (NICUs). Some studies affirm that neonates can perceive noises from 113 Hz, and can therefore be affected by sound sources with high spectral content at low frequencies (e.g., incubator engine, air fan). Other studies suggest that reverberation amplifies noise within incubators. In this paper, the reverberation time (T, T 30) within an incubator with standard dimensions was measured in one-third octave bands. To get reliable results, the T was measured in 15 positions at the neonate's ear height, in a room with low T values (to reduce the influence of the room in the results), using an impulsive sound method. Results show a heterogeneous T distribution at the neonate's ear height, with maximum average T differences between positions of 1.07 s. The highest average T of all microphone positions is 2.27 s at 125 Hz, an extremely high mean value for such a small space. As the frequency of electrical devices in America is 60 Hz, some harmonics lay within the one-third octave band of 125 Hz, and therefore may create a very reverberant and inappropriate acoustic environment within the audible spectrum of neonates. As the acoustic environment of the incubator and the room are coupled, it is expected that the results are higher in the NICUs than in the room where the measurements were conducted, as NICUs are more reverberant. Therefore, it is recommended that the T will be limited in the international standards, and that incubator designers take it into account.
RESUMO
The neonatal intensive care unit (NICU) is a very noisy place as compared to the intrauterine environment. To protect the neonate's health, international guidelines suggest avoiding noise levels above 45 dB in NICUs, but this recommendation is not normally met. The incubator acoustic isolation and the acoustic features of the NICU play important roles in determining the noise measured inside the incubator. In this study, the influence of two types of rooms, one with sound-absorbent covering and the other with reverberant surfaces, on the acoustic isolation of a neonatal incubator was evaluated using three acoustic isolation indexes: the level difference, the apparent sound reduction index, and the standardized level difference. Results show that the acoustic isolation of the incubator is very poor, with a level difference below 11 dBA at all frequencies. At 62.5 Hz, the level difference measured in both rooms exhibits a negative value, indicating that the incubator amplifies the noise coming from the NICU. Isolation of the incubator is poor, and the reverberation time (RT) of the containing room influences RT of the incubator, which is consequently higher when the containing room is reverberant; for example, the incubator RT in the reverberant NICU is 0.72 s higher at 500 Hz than that in a room with sound-absorbent covering.