Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(20): 13657-13665, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34591445

RESUMO

This work evaluated the nitrogen oxide (NOx) emissions of 277 heavy-duty diesel vehicles (HDDVs) from three portable emission measurement system testing programs. HDDVs in these programs were properly maintained before emission testing, so the malfunction indicator lamp (MIL) was not illuminated. NOx emissions of some HDDVs were significantly higher than the certification standard even during hot operations where exhaust temperature was ideal for selective catalytic reduction to reduce NOx. For engines certified to the 0.20 g/bhp-hr NOx standard, hot operation NOx emissions increased with engine age at 0.081 ± 0.016 g/bhp-hr per year. The correlation between emissions and mileage was weak because six trucks showed extraordinarily high apparent emission increase rates reaching several multiples of the standard within the first 15,000 miles of operation. The overall annual increase in NOx emissions for the HDDVs in this study was two-thirds of what was observed in real-world emissions for HDDVs at the Caldecott Tunnel over the past decade. The vehicles at the Caldecott Tunnel would include those without proper maintenance, and the inclusion of these vehicles possibly explains the difference in the rate of emission increase. The results suggest that HDDVs need robust strategies to better control in-use NOx emissions.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Catálise , Gasolina/análise , Veículos Automotores , Óxidos de Nitrogênio/análise , Emissões de Veículos/análise
2.
J Air Waste Manag Assoc ; 71(10): 1277-1291, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33576718

RESUMO

Over the past decade, efforts to reduce emissions of particulate matter (PM) and oxides of nitrogen (NO + NO2, or NOx) from heavy-duty diesel vehicles (HDDVs) have led to the widespread adoption of both Diesel Particulate Filters (DPFs) to control PM and Selective Catalytic Reduction (SCR) to control NOx. We evaluated the performance of DPFs and SCR with 13,327 real-world fuel-based Black Carbon (BC) and NOx emission factors from 9,167 unique heavy-duty vehicles (primarily HDDVs) measured at four sites in California (two ports, two highways) from 2011 to 2018. BC emission factors have decreased by 90% during the past decade. At the same time, BC distributions have become increasingly skewed toward "high-emitters" - e.g., the portion of the HDDV fleet responsible for half of all BC emissions has decreased from ~16% to ~3%. NOx emission factors have also decreased over the past decade, but by only 31%. They remain roughly five times greater than in-use thresholds.We examined changes in BC and NOx emissions with engine age. BC emissions from DPF-only trucks decreased slightly but insignificantly, by 6 ± 15 mg/kg fuel per year, while for DPF+SCR trucks they increased by 5 ± 3. These changes are less than 5% of in-use thresholds. The annual increase in NOx emissions with age was much greater: 1.44 ± 0.28 g/kg for older SCR trucks without on-board diagnostic (OBD) capabilities and 0.48 ± 0.35 for newer trucks with OBD, roughly 20- 50% of in-use thresholds. Paired t-tests on the over 600 vehicles that were observed in multiple campaigns were consistent with these results. Observed changes in BC emissions with age were best fit with a "gross emitter" model assuming an annual DPF failure rate of 0.83 ± 0.01% for DPF-only trucks and 0.56 ± 0.01% for DPF+SCR trucks.Implications: These observations of real-world HDV emission factors have several major implications for regulatory efforts to reduce them. The increasing importance of a relatively small number of high BC emitters suggests that widespread sampling of the on-road fleet will be necessary to identify these vehicles. On the other hand, the much more ubiquitous deterioration in NOx control measures may be better addressed by incorporating on-board diagnostic systems, with telematic data transfer when possible, into inspection and maintenance programs. These NOx observations also highlight the need for strengthening heavy-duty SCR durability demonstration requirements.


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Poluentes Atmosféricos/análise , California , Monitoramento Ambiental , Veículos Automotores , Material Particulado/análise , Emissões de Veículos/análise
3.
Nature ; 575(7781): 180-184, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31695210

RESUMO

Methane is a powerful greenhouse gas and is targeted for emissions mitigation by the US state of California and other jurisdictions worldwide1,2. Unique opportunities for mitigation are presented by point-source emitters-surface features or infrastructure components that are typically less than 10 metres in diameter and emit plumes of highly concentrated methane3. However, data on point-source emissions are sparse and typically lack sufficient spatial and temporal resolution to guide their mitigation and to accurately assess their magnitude4. Here we survey more than 272,000 infrastructure elements in California using an airborne imaging spectrometer that can rapidly map methane plumes5-7. We conduct five campaigns over several months from 2016 to 2018, spanning the oil and gas, manure-management and waste-management sectors, resulting in the detection, geolocation and quantification of emissions from 564 strong methane point sources. Our remote sensing approach enables the rapid and repeated assessment of large areas at high spatial resolution for a poorly characterized population of methane emitters that often appear intermittently and stochastically. We estimate net methane point-source emissions in California to be 0.618 teragrams per year (95 per cent confidence interval 0.523-0.725), equivalent to 34-46 per cent of the state's methane inventory8 for 2016. Methane 'super-emitter' activity occurs in every sector surveyed, with 10 per cent of point sources contributing roughly 60 per cent of point-source emissions-consistent with a study of the US Four Corners region that had a different sectoral mix9. The largest methane emitters in California are a subset of landfills, which exhibit persistent anomalous activity. Methane point-source emissions in California are dominated by landfills (41 per cent), followed by dairies (26 per cent) and the oil and gas sector (26 per cent). Our data have enabled the identification of the 0.2 per cent of California's infrastructure that is responsible for these emissions. Sharing these data with collaborating infrastructure operators has led to the mitigation of anomalous methane-emission activity10.


Assuntos
Monitoramento Ambiental , Metano/análise , Gerenciamento de Resíduos , California , Efeito Estufa , Esterco , Metano/química , Metano/metabolismo , Gás Natural , Indústria de Petróleo e Gás/métodos , Petróleo , Águas Residuárias
4.
Environ Sci Technol ; 53(16): 9636-9645, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31347357

RESUMO

California methane (CH4) emissions are quantified for three years from two tower networks and one aircraft campaign. We used backward trajectory simulations and a mesoscale Bayesian inverse model, initialized by three inventories, to achieve the emission quantification. Results show total statewide CH4 emissions of 2.05 ± 0.26 (at 95% confidence) Tg/yr, which is 1.14 to 1.47 times greater than the anthropogenic emission estimates by California Air Resource Board (CARB). Some of differences could be biogenic emissions, superemitter point sources, and other episodic emissions which may not be completely included in the CARB inventory. San Joaquin Valley (SJV) has the largest CH4 emissions (0.94 ± 0.18 Tg/yr), followed by the South Coast Air Basin, the Sacramento Valley, and the San Francisco Bay Area at 0.39 ± 0.18, 0.21 ± 0.04, and 0.16 ± 0.05 Tg/yr, respectively. The dairy and oil/gas production sources in the SJV contribute 0.44 ± 0.36 and 0.22 ± 0.23 Tg CH4/yr, respectively. This study has important policy implications for regulatory programs, as it provides a thorough multiyear evaluation of the emissions inventory using independent atmospheric measurements and investigates the utility of a complementary multiplatform approach in understanding the spatial and temporal patterns of CH4 emissions in the state and identifies opportunities for the expansion and applications of the monitoring network.


Assuntos
Poluentes Atmosféricos , Metano , Aeronaves , Teorema de Bayes , California , São Francisco
5.
Environ Sci Technol ; 53(9): 5504-5511, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30995015

RESUMO

Real-world nitrogen oxides (NO x) emissions were estimated using on-board sensor readings from 72 heavy-duty diesel vehicles (HDDVs) equipped with a Selective Catalytic Reduction (SCR) system in California. The results showed that there were large differences between in-use and certification NO x emissions, with 12 HDDVs emitting more than three times the standard during hot-running and idling operations in the real world. The overall NO x conversion efficiencies of the SCR system on many vehicles were well below the 90% threshold that is expected for an efficient SCR system, even when the SCR system was above the optimum operating temperature threshold of 250 °C. This could potentially be associated with SCR catalyst deterioration on some engines. The Not-to-Exceed (NTE) requirements currently used by the heavy-duty in-use compliance program were evaluated using on-board NO x sensor data. Valid NTE events covered only 4.2-16.4% of the engine operation and 6.6-34.6% of the estimated NO x emissions. This work shows that low cost on-board NO x sensors are a convenient tool to monitor in-use NO x emissions in real-time, evaluate the SCR system performance, and identify vehicle operating modes with high NO x emissions. This information can inform certification and compliance programs to ensure low in-use NO x emissions.


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , California , Catálise , Veículos Automotores , Óxidos de Nitrogênio
6.
Environ Sci Technol ; 53(6): 2961-2970, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30821440

RESUMO

Rapid increase in atmospheric methane (CH4) mixing ratios over the past century is attributable to the intensification of human activities. Information on spatially explicit source contributions is needed to develop efficient and cost-effective CH4 emission reduction and mitigation strategies to addresses near-term climate change. This study collected long-term ambient CH4 measurements at Mount Wilson Observatory (MWO) in Los Angeles, California, to estimate the annual CH4 emissions from the portion of Los Angeles County that is within the South Coast Air Basin (SCLA). The measurement-based CH4 emission estimates for SCLA ranged from 3.95 to 4.89 million metric tons (MMT) carbon dioxide equivalent (CO2e) per year between 2012 and 2016. Source apportionment of CH4, CO, CO2, and volatile organic compounds (VOCs) measurements were used to evaluate source categories that contributed to ambient CH4 mixing ratio enhancements (ΔCH4) at SCLA between 2014 and 2016. Results suggested ΔCH4 contributions of 56-79% from natural gas sources, 7-31% from landfills, and 4-15% from transportation sources. The SCLA-specific CH4 emission estimate made using a research grade gridded CH4 emission inventory suggested contributions of 47% from natural gas sources and 50% from landfills. Subsequent airborne measurements determined that CH4 emissions from two major CH4 sources in SCLA were significantly smaller in magnitude than previously thought. This study highlights the importance of studying the variabilities of CH4 emissions across California for policy makers and stakeholders alike.


Assuntos
Poluentes Atmosféricos , Metano , Monitoramento Ambiental , Los Angeles , Gás Natural
7.
Environ Sci Technol ; 51(12): 6981-6989, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28166626

RESUMO

The California Air Resources Board (ARB) and the City of Sacramento undertook this study to characterize the in-use emissions from model year (MY) 2010 or newer diesel, liquefied natural gas (LNG), and hydraulic hybrid diesel engines during real-world refuse truck operation. Emissions from five trucks, two diesels equipped with selective catalytic reduction (SCR), two LNG's equipped with three-way catalyst (TWC), and one hydraulic hybrid diesel equipped with SCR, were measured using a portable emissions measurement system (PEMS) in the Sacramento area. Results showed that the brake-specific NOx emissions for the LNG trucks equipped with the TWC catalyst were lowest of all the technologies tested. Results also showed that the brake specific NOx emissions from the conventional diesel engines were significantly higher despite the exhaust temperature being high enough for proper SCR function. Like diesel engines, the brake specific NOx emissions from the hydraulic hybrid diesel also exceeded certification although this can be explained on the basis of the temperature profile. Future studies are warranted to establish whether the below average SCR performance observed in this study is a systemic issue or is it a problem specifically observed during this work.


Assuntos
Poluentes Atmosféricos , Veículos Automotores , Gás Natural , California , Emissões de Veículos
8.
J Air Waste Manag Assoc ; 66(10): 1031-44, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27268732

RESUMO

UNLABELLED: This paper discusses results from a vehicular emissions research study of over 350 vehicles conducted in three communities in Los Angeles, CA, in 2010 using vehicle chase measurements. The study explores the real-world emission behavior of light-duty gasoline vehicles, characterizes real-world super-emitters in the different regions, and investigates the relationship of on-road vehicle emissions with the socioeconomic status (SES) of the region. The study found that in comparison to a 2007 earlier study in a neighboring community, vehicle emissions for all measured pollutants had experienced a significant reduction over the years, with oxides of nitrogen (NOX) and black carbon (BC) emissions showing the largest reductions. Mean emission factors of the sampled vehicles in low-SES communities were roughly 2-3 times higher for NOX, BC, carbon monoxide, and ultrafine particles, and 4-11 times greater for fine particulate matter (PM2.5) than for vehicles in the high-SES neighborhood. Further analysis indicated that the emission factors of vehicles within a technology group were also higher in low-SES communities compared to similar vehicles in the high-SES community, suggesting that vehicle age alone did not explain the higher vehicular emission in low-SES communities. Evaluation of the emission factor distribution found that emissions from 12% of the sampled vehicles were greater than five times the mean from all of the sampled fleet, and these vehicles were consequently categorized as "real-world super-emitters." Low-SES communities had approximately twice as many super-emitters for most of the pollutants as compared to the high-SES community. Vehicle emissions calculated using model-year-specific average fuel consumption assumptions suggested that approximately 5% of the sampled vehicles accounted for nearly half of the total CO, PM2.5, and UFP emissions, and 15% of the vehicles were responsible for more than half of the total NOX and BC emissions from the vehicles sampled during the study. IMPLICATIONS: This study evaluated the real-world emission behavior and super-emitter distribution of light-duty gasoline vehicles in California, and investigated the relationship of on-road vehicle emissions with local socioeconomic conditions. The study observed a significant reduction in vehicle emissions for all measured pollutants when compared to an earlier study in Wilmington, CA, and found a higher prevalence of high-emitting vehicles in low-socioeconomic-status communities. As overall fleet emissions decrease from stringent vehicle emission regulations, a small fraction of the fleet may contribute to a disproportionate share of the overall on-road vehicle emissions. Therefore, this work will have important implications for improving air quality and public health, especially in low-SES communities.


Assuntos
Poluentes Atmosféricos/análise , Material Particulado/análise , Emissões de Veículos/análise , Monitoramento Ambiental , Gasolina/análise , Los Angeles , Veículos Automotores/classificação , Fatores Socioeconômicos
10.
J Air Waste Manag Assoc ; 65(4): 404-12, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25947210

RESUMO

UNLABELLED: Measuring greenhouse gas (GHG) source emissions provides data for validation of GHG inventories, which provide the foundation for climate change mitigation. Two Toyota RAV4 electric vehicles were outfitted with high-precision instrumentation to determine spatial and temporal resolution of GHGs (e.g., nitrous oxide, methane [CH4], and carbon dioxide [CO2]), and other gaseous species and particulate metrics found near emission sources. Mobile measurement platform (MMP) analytical performance was determined over relevant measurement time scales. Pollutant residence times through the sampling configuration were measured, ranging from 3 to 11 sec, enabling proper time alignment for spatial measurement of each respective analyte. Linear response range for GHG analytes was assessed across expected mixing ratio ranges, showing minimal regression and standard error differences between 5, 10, 30, and 60 sec sampling intervals and negligible differences between the two MMPs. GHG instrument drift shows deviation of less than 0.8% over a 24-hr measurement period. These MMPs were utilized in tracer-dilution experiments at a California landfill and natural gas compressor station (NGCS) to quantify CH4 emissions. Replicate landfill measurements during October 2009 yielded annual CH4 emissions estimates of 0.10±0.01, 0.11±0.01, and 0.12±0.02 million tonnes of CO2 equivalent (MTCO2E). These values compare favorably to California GHG Emissions Inventory figures for 2007, 2008, and 2009 of 0.123, 0.125, and 0.126 MTCO2E/yr, respectively, for this facility. Measurements to quantify NGCS boosting facility-wide emissions, during June 2010 yielded an equivalent of 5400±100 TCO2E/yr under steady-state operation. However, measurements during condensate transfer without operational vapor recovery yield an instantaneous emission rate of 2-4 times greater, but was estimated to only add 12 TCO2E/yr overall. This work displays the utility for mobile GHG measurements to validate existing measurement and modeling approaches, so emission inventory values can be confirmed and associated uncertainties reduced. IMPLICATIONS: Measuring greenhouse gas (GHG) source emissions provides data and validation for GHG inventories, the foundation for climate change mitigation. Mobile measurement platforms with robust analytical instrumentation completed tracer-dilution experiments in California at a landfill and natural gas compressor station (NGCS) to quantify CH4 emissions. Data collected for landfill CH4 agree with the current California emissions inventory, while NGCS data show the possible variability from this type of facility. This work displays the utility of mobile GHG measurements to validate existing measurement and modeling approaches, such that emission inventory values can be confirmed, associated uncertainties reduced, and mitigation efforts quantified.


Assuntos
Poluentes Atmosféricos/química , Mudança Climática , Monitoramento Ambiental/métodos , Metano/química , Gás Natural/análise , Eliminação de Resíduos , Óxido Nitroso/química
11.
Environ Sci Technol ; 48(14): 8235-42, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24960475

RESUMO

Experiments were conducted to characterize the particulate matter (PM)-size distribution, number concentration, and chemical composition emitted from transit buses powered by a USEPA 2010 compliant, stoichiometric heavy-duty natural gas engine equipped with a three-way catalyst (TWC). Results of the particle-size distribution showed a predominant nucleation mode centered close to 10 nm. PM mass in the size range of 6.04 to 25.5 nm correlated strongly with mass of lubrication-oil-derived elemental species detected in the gravimetric PM sample. Results from oil analysis indicated an elemental composition that was similar to that detected in the PM samples. The source of elemental species in the oil sample can be attributed to additives and engine wear. Chemical speciation of particulate matter (PM) showed that lubrication-oil-based additives and wear metals were a major fraction of the PM mass emitted from the buses. The results of the study indicate the possible existence of nanoparticles below 25 nm formed as a result of lubrication oil passage through the combustion chamber. Furthermore, the results of oxidative stress (OS) analysis on the PM samples indicated strong correlations with both the PM mass calculated in the nanoparticle-size bin and the mass of elemental species that can be linked to lubrication oil as the source.


Assuntos
Poluentes Atmosféricos/análise , Veículos Automotores , Gás Natural , Material Particulado/análise , Emissões de Veículos/análise , Poluentes Atmosféricos/química , Carbono/análise , Fracionamento Químico , Macrófagos Alveolares/metabolismo , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Estados Unidos , United States Environmental Protection Agency
12.
Environ Sci Technol ; 48(3): 1475-83, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24387296

RESUMO

Measurements on truck-dominated freeways in southern California have offered a unique opportunity to track emission changes that have occurred due to the implementation of local and state regulations affecting heavy-duty diesel trucks. These regulations have accelerated fleet turnover to cleaner and newer trucks. In this study, a mobile platform was used to measure nitrogen oxides (NOX), black carbon (BC), and ultrafine particles (UFPs) on diesel-dominated southern California freeways. Fleet-averaged fuel-based emission factors were calculated for diesel trucks and the results showed NOX and BC emissions were reduced by 40% or more between 2009 and 2011, but there were no statistically significant reductions for UFP. Technologies associated with these new trucks, mainly diesel particulate filters, have changed the physical characteristics of diesel particulate, shifting the size distribution of such particles to smaller modes (10-20 nm). In addition, integration of 2007 MY trucks into the fleet was also observed in on-road ratios of nitrogen dioxide (NO2) and NOX. NO2/NOX ratios steadily increased from 0.23 ± 0.06 in 2009 to 0.30 ± 0.03 in 2010 but plateaued and declined in 2011.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , Monitoramento Ambiental/métodos , Veículos Automotores/normas , Material Particulado/análise , Emissões de Veículos/análise , Poluição do Ar/legislação & jurisprudência , California , Monitoramento Ambiental/legislação & jurisprudência , Filtração , Regulamentação Governamental , Veículos Automotores/legislação & jurisprudência , Óxidos de Nitrogênio/análise , Fuligem/análise
13.
J Air Waste Manag Assoc ; 63(8): 926-33, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24010373

RESUMO

UNLABELLED: Engine and exhaust control technologies applied to compressed natural gas (CNG) transit buses have advanced from lean-burn, to lean-burn with oxidation catalyst (OxC), to stoichiometric combustion with three-way catalyst (TWC). With this technology advancement, regulated gaseous and particulate matter emissions have been significantly reduced. Two CNG transit buses equipped with stoichiometric combustion engines and TWCs were tested on a chassis dynamometer, and their emissions were measured. Emissions from the stoichiometric engines with TWCs were then compared to the emissions from lean-burn CNG transit buses tested in previous studies. Stoichiometric combustion with TWC was effective in reducing emissions of oxides of nitrogen (NO(x)), particulate matter (PM), and nonmethane hydrocarbon (NMHC) by 87% to 98% depending on pollutants and test cycles, compared to lean combustion. The high removal efficiencies exceeded the emission reduction required from the certification standards, especially for NO(x) and PM. While the certification standards require 95% and 90% reductions for NO(x) and PM, respectively, from the engine model years 1998-2003 to the engine model year 2007, the measured NO(x) and PM emissions show 96% and 95% reductions, respectively, from the lean-burn engines to the stoichiometric engines with TWC over the transient Urban Dynamometer Driving Schedule (UDDS) cycle. One drawback of stoichiometric combustion with TWC is that this technology produces higher carbon monoxide (CO) emissions than lean combustion. In regard to controlling CO emissions, lean combustion with OxC is more effective than stoichiometric combustion. Stoichiometric combustion with TWC produced higher greenhouse gas (GHG) emissions including carbon dioxide (CO2) and methane (CH4) than lean combustion during the UDDS cycle, but lower GHG emissions during the steady-state cruise cycle. IMPLICATIONS: Stoichiometric combustion with three-way catalyst is currently the best emission control technology available for compressed natural gas (CNG) transit buses to meet the stringent U.S. Environmental Protection Agency (EPA) 2010 heavy-duty engine NO(x) emissions standard. For existing lean-burn CNG transit buses in the fleet, oxidation catalyst would be the most effective retrofit technology for the control of NMHC and CO emissions.


Assuntos
Poluentes Atmosféricos/análise , Monóxido de Carbono/análise , Hidrocarbonetos/análise , Óxidos de Nitrogênio/análise , Emissões de Veículos/análise , Catálise , Efeito Estufa , Gás Natural , Oxirredução , Material Particulado/análise , Meios de Transporte
14.
J Air Waste Manag Assoc ; 63(8): 984-96, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24010380

RESUMO

UNLABELLED: In total, 24 polycyclic aromatic hydrocarbons (PAHs) in both gas and particle phases and 35 nitro-PAHs in particle phase were analyzed in the exhaust from heavy-duty diesel vehicles equipped with after-treatment for particulate matter (PM) and NO(x) control. The test vehicles were carried out using a chassis dynamometer under highway cruise, transient Urban Dynamometer Driving Schedule (UDDS), and idle operation. The after-treatment efficiently abated more than 90% of the total PAHs. Indeed, the particle-bound PAHs were reduced by > 99%, and the gaseous PAHs were removed at various extents depending on the type of after-treatment and the test cycles. The PAHs in gas phase dominated the total PAH (gas + particle phases) emissions for all the test vehicles and for all cycles; that is, 99% of the two-ring and 98% of the three-ring and 97% of the four-ring and 95% of the carcinogenic PAHs were in the gas-phase after a diesel particle filter (DPF) and not bound to the very small amount of particulate matter left after a DPF. Consequently, an evaluation of the toxicity of DPF exhaust must include this volatile fraction and cannot be based on the particle fraction only. The selective catalytic reduction (SCR) did not appear to promote nitration of the PAHs in general, although there might be some selective nitration of phenanthrene. Importantly the after-treatment reduced the equivalent B[a]P (B[a]Peq) emissions by > 95%, suggesting a substantial health benefit. IMPLICATIONS: This study demonstrated that after-treatments, including diesel particulate filters (DPF), diesel oxidation catalysts (DOC), and selective catalytic reduction (SCR), significantly reduce the emissions of PAHs from heavy-duty diesel engines. The gas-phase PAHs dominate the total PAH (gas + particle phases) emissions from heavy-duty diesel vehicles retrofitted with various DPFs and not bound to the very small amount of particulate matter left after a DPF. Consequently, an evaluation of the toxicity of DPF exhaust must also include this volatile fraction and cannot be based on the particle fraction only.


Assuntos
Poluição do Ar/prevenção & controle , Hidrocarbonetos Policíclicos Aromáticos/análise , Emissões de Veículos/análise , Poluentes Atmosféricos/análise , Catálise , Filtração
15.
Environ Sci Technol ; 47(14): 7892-8, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23786244

RESUMO

The California Air Resources Board (ARB) undertook this study to characterize the in-use emissions of model year (MY) 2010 or newer diesel engines. Emissions from four trucks: one equipped with an exhaust gas recirculation (EGR) and three equipped with EGR and a selective catalytic reduction (SCR) device were measured on two different routes with three different payloads using a portable emissions measurement system (PEMS) in the Sacramento area. Results indicated that brake-specific NOx emissions for the truck equipped only with an EGR were independent of the driving conditions. Results also showed that for typical highway driving conditions, the SCR technology is proving to be effective in controlling NOx emissions. However, under operations where the SCR's do not reach minimum operating temperature, like cold starts and some low load/slow speed driving conditions, NOx emissions are still elevated. The study indicated that strategies used to maintain exhaust temperature above a certain threshold, which are used in some of the newer SCRs, have the potential to control NOx emissions during certain low-load/slow speed driving conditions.


Assuntos
Óxido Nítrico/análise , Emissões de Veículos , Catálise
16.
Environ Sci Technol ; 46(1): 189-95, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22050708

RESUMO

We report on the development and application of an integrated set of analytical tools that enable accurate measurement of total, extractable, and, importantly, the oxidation state of vanadium in sub-milligram masses of environmental aerosols and solids. Through rigorous control of blanks, application of magnetic-sector-ICPMS, and miniaturization of the extraction/separation methods we have substantially improved upon published quantification limits. The study focused on the application of these methods to particulate matter (PM) emissions from diesel vehicles, both in baseline configuration without after-treatment and also equipped with advanced PM and NO(x) emission controls. Particle size-resolved vanadium speciation data were obtained from dynamometer samples containing total vanadium pools of only 0.2-2 ng and provide some of the first measurements of the oxidation state of vanadium in diesel vehicle PM emissions. The emission rates and the measured fraction of V(V) in PM from diesel engines running without exhaust after-treatment were both low (2-3 ng/mile and 13-16%, respectively). The V(IV) species was measured as the dominant vanadium species in diesel PM emissions. A significantly greater fraction of V(V) (76%) was measured in PM from the engine fitted with a prototype vanadium-based selective catalytic reductors (V-SCR) retrofit. The emission rate of V(V) determined for the V-SCR equipped vehicle (103 ng/mile) was 40-fold greater than that from the baseline vehicle. A clear contrast between the PM size-distributions of V(V) and V(IV) emissions was apparent, with the V(V) distribution characterized by a major single mode in the ultrafine (<0.25 µm) size range and the V(IV) size distribution either flat or with a small maxima in the accumulation mode (0.5-2 µm). The V(V) content of the V-SCR PM (6.6 µg/g) was 400-fold greater than that in PM from baseline (0.016 µg/g) vehicles, and among the highest of all environmental samples examined. Synchrotron based V 1s XANES spectroscopy of vanadium-containing fine-particle PM from the V-SCR identified V(2)O(5) as the dominant vanadium species.


Assuntos
Aerossóis/química , Atmosfera/química , Gasolina , Veículos Automotores , Material Particulado/química , Vanádio/análise , Emissões de Veículos/análise , Acetatos/química , Cidades , Monitoramento Ambiental , Oxirredução , Tamanho da Partícula , Solubilidade , Vanádio/química , Compostos de Vanádio/análise , Água/química , Espectroscopia por Absorção de Raios X
17.
J Air Waste Manag Assoc ; 61(10): 1046-56, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22070037

RESUMO

Fuel-based emission factors for 143 light-duty gasoline vehicles (LDGVs) and 93 heavy-duty diesel trucks (HDDTs) were measured in Wilmington, CA using a zero-emission mobile measurement platform (MMP). The frequency distributions of emission factors of carbon monoxide (CO), nitrogen oxides (NO(x)), and particle mass with aerodynamic diameter below 2.5 microm (PM2.5) varied widely, whereas the average of the individual vehicle emission factors were comparable to those reported in previous tunnel and remote sensing studies as well as the predictions by Emission Factors (EMFAC) 2007 mobile source emission model for Los Angeles County. Variation in emissions due to different driving modes (idle, low- and high-speed acceleration, low- and high-speed cruise) was found to be relatively small in comparison to intervehicle variability and did not appear to interfere with the identification of high emitters, defined as the vehicles whose emissions were more than 5 times the fleet-average values. Using this definition, approximately 5% of the LDGVs and HDDTs measured were high emitters. Among the 143 LDGVs, the average emission factors of NO(x), black carbon (BC), PM2.5, and ultrafine particle (UFP) would be reduced by 34%, 39%, 44%, and 31%, respectively, by removing the highest 5% of emitting vehicles, whereas CO emission factor would be reduced by 50%. The emission distributions of the 93 HDDTs measured were even more skewed: approximately half of the NO(x) and CO fleet-average emission factors and more than 60% of PM2.5, UFP, and BC fleet-average emission factors would be reduced by eliminating the highest-emitting 5% HDDTs. Furthermore, high emissions of BC, PM2.5, and NO(x) tended to cluster among the same vehicles.


Assuntos
Monitoramento Ambiental/métodos , Emissões de Veículos/análise , Poluentes Atmosféricos/análise , Los Angeles , Veículos Automotores , Tamanho da Partícula , Material Particulado
18.
Environ Sci Technol ; 45(6): 2413-9, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21322629

RESUMO

Four heavy-duty and medium-duty diesel vehicles were tested in six different aftertreament configurations using a chassis dynamometer to characterize the occurrence of nucleation (the conversion of exhaust gases to particles upon dilution). The aftertreatment included four different diesel particulate filters and two selective catalytic reduction (SCR) devices. All DPFs reduced the emissions of solid particles by several orders of magnitude, but in certain cases the occurrence of a volatile nucleation mode could increase total particle number emissions. The occurrence of a nucleation mode could be predicted based on the level of catalyst in the aftertreatment, the prevailing temperature in the aftertreatment, and the age of the aftertreatment. The particles measured during nucleation had a high fraction of sulfate, up to 62% of reconstructed mass. Additionally the catalyst reduced the toxicity measured in chemical and cellular assays suggesting a pathway for an inverse correlation between particle number and toxicity. The results have implications for exposure to and toxicity of diesel PM.


Assuntos
Automóveis/estatística & dados numéricos , Óxidos de Nitrogênio/química , Material Particulado/química , Emissões de Veículos/análise , Poluição do Ar/prevenção & controle , Conservação dos Recursos Naturais/métodos , Filtração , Óxidos de Nitrogênio/análise , Tamanho da Partícula , Material Particulado/análise
19.
Environ Sci Technol ; 43(15): 5928-33, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19731699

RESUMO

Emissions from four heavy-duty and medium-duty diesel vehicles were tested in six different aftertreatment configurations using a chassis dynamometer. The aftertreatment included four different diesel particle filters (DPF) and two prototype selective catalytic reduction (SCR) devices for NO(x) control. The goal of the project was to fully characterize emissions from various in-use vehicles meeting the 2007 particulate matter (PM) standard for the United States and California and to provide a snapshot of emissions from 2010 compliant vehicles. The aftertreatment devices all worked as designed, realizing significant reductions of PM and NO(x). The DPF realized > 95% PM reductions irrespective of cycle and the SCRs > 75% NO(x) reductions during cruise and transient modes, but no NO(x) reductions during idle. Because of the large test matrix of vehicles and aftertreatment devices, we were able to characterize effects on additional emission species (CO, organics, and nucleation mode particles) from these devices as a function of their individual characteristics. The two predicting parameters were found to be exhaust temperature and available catalytic surface in the aftertreatment, which combine to create varying degrees of oxidizing conditions. The aftertreatments were not found to incur a fuel penalty.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , Carbono/análise , Recuperação e Remediação Ambiental/métodos , Óxido Nítrico/análise , Material Particulado/química , Emissões de Veículos/análise , Atmosfera , Carbono/química , Monitoramento Ambiental/métodos , Desenho de Equipamento , Veículos Automotores , Hidrocarbonetos Policíclicos Aromáticos/análise , Meios de Transporte
20.
Environ Sci Technol ; 40(6): 1925-33, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16570617

RESUMO

A new method to measure the trace elemental composition of size-resolved airborne particles that uses acetone extraction followed by ICPMS analysis is compared to three other established methods: copper anode XRF, molybdenum anode XRF, and an ICPMS method that uses HF digestion. The method detection limit (MDL), accuracy, and precision of each method is studied through the analysis of ambient samples collected in California. The MDLs of the new acetone-ICPMS method are similar to MDLs for the established HF-ICPMS method. Both sets of ICPMS MDLs are 1-3 orders of magnitude lower than XRF MDLs for approximately 50 elements other than the light crustal elements such as silicon, sulfur, calcium, and zinc. The accuracy of the acetone-ICPMS method was verified by comparison to measurements made using ion chromatography and the HF-ICPMS method. The acetone-ICPMS analysis method was more precise than the conventional HF-ICPMS method for collocated measurements. Both ICPMS methods were more precise than XRF for most elements. The size distribution of 21 elements contained in ambient particles collected with cascade impactors could be measured with good precision using the new acetone-ICPMS analysis method: lithium, sulfur, potassium, titanium, vanadium, manganese, iron, gallium, germanium, arsenic, selenium, bromine, rubidium, strontium, cadmium, tin, antimony, barium, thallium, lead, and bismuth. It is likely that the size distribution of an additional 9 elements could also be measured when concentrations are sufficiently high: phosphorus, molybdenum, niobium, palladium, cesium, europium, holmium, platinum, and uranium. None of the conventional methods were able to measure the size distribution of these elements with acceptable precision under the conditions studied. The new acetone-ICPMS method should provide useful data for the study of the health effects of airborne particles.


Assuntos
Poluição do Ar/análise , Poeira/análise , Monitoramento Ambiental/métodos , Espectrometria de Massas/métodos , Oligoelementos/análise , California , Tamanho da Partícula , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...