Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 374: 128790, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36842508

RESUMO

Microalgae's ability to grow in poultry slaughterhouse wastewater (PSHWW) is attracting interest for low-cost biomass production and wastewater treatment. In this study, PSHWW is evaluated by the cultivation of Chlorella sp. andNeochloris sp. for biomass,bioproducts, and nutrient removal. Results showed that Neochloris sp.produced the maximum of 1.4 g L-1 biomass and 38% lipids compared toChlorella sp. (1.3 g L-1 and 36%). The maximum carotenoids, proteins, and carbohydrates obtained from Neochloris sp. are 38 mg/g DW, 41.7%, and 29%, respectively. COD, nitrite, and phosphate removal efficiencies of 96.8%, 95%, and 79%, respectively, by Neochloris sp. and 89%, 93.5%, and 64.5%, respectively, by Chlorella sp. FTIR confirms the role of functional groups in pollutant absorption by microalgae. The predominant fatty acids found were C16, C18, C18:1, C18:2, C18:3, C20:5, and C22:6. The research demonstrated that microalgae can be used for the treatment of wastewater, nutraceuticals, food additives, and biofuels.


Assuntos
Chlorella , Clorofíceas , Poluentes Ambientais , Microalgas , Animais , Águas Residuárias , Chlorella/metabolismo , Microalgas/metabolismo , Poluentes Ambientais/metabolismo , Matadouros , Aves Domésticas , Biomassa , Biocombustíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA