Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14529, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914565

RESUMO

For alkaline anion-exchange membrane electrolysers and fuel cells to become a technological reality, hydroxide-ion (OH-) conducting membranes that are flexible, robust, affording high OH- conductivity, and synthesised in a low-cost and scalable way must be developed. In this paper, we engineer a stable, self-supporting, and flexible fibre mat using a low-cost ZIF-8 metal-organic framework composited with ionic liquid tetrabutylammonium hydroxide and widely used polyacrylonitrile as polymeric backbone. We obtain mats with a high intrinsic OH- conductivity for a metal-organic framework-based material already at room temperature, without added ion-conductor polymers. This approach will contribute to the development of low-cost and tuneable ion-conducting membranes.

2.
Nanoscale ; 14(3): 910-918, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34988567

RESUMO

Carbon dots (CDs) are an emerging class of photoluminescent material. Their unique optical properties arise from the discrete energy levels in their electronic states, which directly relate to their crystalline and chemical structure. It is expected that when CDs go through structural changes via chemical reduction or thermal annealing, their energy levels will be altered, inducing unique optoelectronic properties such as solid-state photoluminescence (PL). However, the detailed structural evolution and how the optoelectronic characteristics of CDs are affected remain unclear. Therefore, it is of fundamental interest to understand how the structure of CDs prepared by hydrothermal carbonisation (HTC) rearranges from a highly functionalised disordered structure into a more ordered graphitic structure. In this paper, detailed structural characterisation and in situ TEM were conducted to reveal the structural evolution of CDs during the carbonisation process, which have demonstrated a growth in aromatic domains and reduction in oxidation sites. These structural features are correlated with their near-infrared (NIR) solid-state PL properties, which may find a lot of practical applications such as temperature sensing, solid-state display lighting and anti-counterfeit security inks.

3.
Adv Sci (Weinh) ; 8(17): e2100016, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34014597

RESUMO

Supercapacitors are increasingly used in short-distance electric transportation due to their long lifetime (≈15 years) and fast charging capability (>10 A g-1 ). To improve their market penetration, while minimizing onboard weight and maximizing space-efficiency, materials costs must be reduced (<10 $ kg-1 ) and the volumetric energy-density increased (>8 Wh L-1 ). Carbon nanofibers display good gravimetric capacitance, yet their marketability is hindered by their low density (0.05-0.1 g cm-3 ). Here, the authors increase the packing density of low-cost, free-standing carbon nanofiber mats (from 0.1 to 0.6 g cm-3 ) through uniaxial compression. X-ray computed tomography reveals that densification occurs by reducing the inter-fiber pore size (from 1-5 µm to 0.2-0.5 µm), which are not involved in double-layer capacitance. The improved packing density is directly proportional to the volumetric performances of the device, which reaches a volumetric capacitance of 130 F cm-3 and energy density of 6 Wh L-1 at 0.1 A g-1 using a loading of 3 mg cm-2 . The results outperform most commercial and lab-scale porous carbons synthesized from bioresources (50-100 F cm-3 , 1-3 Wh L-1 using 10 mg cm-2 ) and contribute to the scalable design of sustainable electrodes with minimal 'dead volume' for efficient supercapacitors.

4.
Chem Sci ; 10(10): 2980-2988, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30996877

RESUMO

We have discovered a very simple method to address the challenge associated with the low volumetric energy density of free-standing carbon nanofiber electrodes for supercapacitors by electrospinning Kraft lignin in the presence of an oxidizing salt (NaNO3) and subsequent carbonization in a reducing atmosphere. The presence of the oxidative salt decreases the diameter of the resulting carbon nanofibers doubling their packing density from 0.51 to 1.03 mg cm-2 and hence doubling the volumetric energy density. At the same time, the oxidative NaNO3 salt eletrospun and carbonized together with lignin dissolved in NaOH acts as a template to increase the microporosity, thus contributing to a good gravimetric energy density. By simply adjusting the process parameters (amount of oxidizing/reducing agent), the gravimetric and volumetric energy density of the resulting lignin free-standing carbon nanofiber electrodes can be carefully tailored to fit specific power to energy demands. The areal capacitance increased from 147 mF cm-2 in the absence of NaNO3 to 350 mF cm-2 with NaNO3 translating into a volumetric energy density increase from 949 µW h cm-3 without NaNO3 to 2245 µW h cm-3 with NaNO3. Meanwhile, the gravimetric capacitance also increased from 151 F g-1 without to 192 F g-1 with NaNO3.

5.
Nat Commun ; 10(1): 1340, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30902984

RESUMO

Geometric or electronic confinement of guests inside nanoporous hosts promises to deliver unusual catalytic or opto-electronic functionality from existing materials but is challenging to obtain particularly using metastable hosts, such as metal-organic frameworks (MOFs). Reagents (e.g. precursor) may be too large for impregnation and synthesis conditions may also destroy the hosts. Here we use thermodynamic Pourbaix diagrams (favorable redox and pH conditions) to describe a general method for metal-compound guest synthesis by rationally selecting reaction agents and conditions. Specifically we demonstrate a MOF-confined RuO2 catalyst (RuO2@MOF-808-P) with exceptionally high catalytic CO oxidation below 150 °C as compared to the conventionally made SiO2-supported RuO2 (RuO2/SiO2). This can be caused by weaker interactions between CO/O and the MOF-encapsulated RuO2 surface thus avoiding adsorption-induced catalytic surface passivation. We further describe applications of the Pourbaix-enabled guest synthesis (PEGS) strategy with tutorial examples for the general synthesis of arbitrary guests (e.g. metals, oxides, hydroxides, sulfides).

6.
RSC Adv ; 9(42): 24248-24258, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35527901

RESUMO

Troublesome aquatic weed, water hyacinth (Eichhornia crassipes) was converted into solid and liquid fractions via green and energy-saving hydrothermal carbonization (HTC). The solid product, hydrochar, was employed as a precursor to prepare magnetic carbon materials by simple activation and magnetization using KOH and Fe3+ ions, respectively. The obtained magnetic adsorbent possessed good magnetic properties and presented outstanding capacities to adsorb methylene blue (524.20 mg g-1), methyl orange (425.15 mg g-1) and tetracycline (294.24 mg g-1) with rapid adsorption kinetics even at high concentrations (up to 500 mg L-1), attributed to high specific surface area and mesopore porosity. Besides the solid hydrochar, the water-soluble liquid product was used to fabricate carbon-based supercapacitors through facile KOH activation with a considerably lower KOH amount in comparison to conventional activation. The supercapacitor electrode made from activated liquid product possessed an extremely high specific surface area of 2545 cm2 g-1 and showed excellent specific capacitance (100 F g-1 or 50 F cm-3 at 1 A g-1) and good retention of capacitance (92% even after 10 000 cycles). This work demonstrated that both solid and liquid HTC fractions from this bio-waste can serve as effective sources to prepare functional carbon materials, making this approach a sustainable zero-waste biomass conversion process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...