Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 9(5)2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28773448

RESUMO

Within nanotechnology, gold and silver nanostructures have unique physical, chemical, and electronic properties [1,2], which make them suitable for a number of applications. Moreover, biosynthetic methods are considered to be a safer alternative to conventional physicochemical procedures for both the environmental and biomedical applications, due to their eco-friendly nature and the avoidance of toxic chemicals in the synthesis. For this reason, employing bio routes in the synthesis of functionalized silver nanoparticles (FAgNP) have gained importance recently in this field. In the present study, we report the rapid synthesis of FAgNP through the extract of pepino (Solanum muricatum) leaves and employing microwave oven irradiation. The core-shell globular morphology and characterization of the different shaped and sized FAgNP, with a core of 20-50 nm of diameter is established using the UV-Visible spectroscopy (UV-vis), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and Zeta potential and dynamic light scanning (DLS) studies. Moreover, cytotoxic studies employing HeLa (human cervix carcinoma) cells were undertaken to understand FAgNP interactions with cells. HeLa cells showed significant dose dependent antiproliferative activity in the presence of FAgNP at relatively low concentrations. The calculated IC50 value was 37.5 µg/mL, similar to others obtained for FAgNPs against HeLa cells.

2.
Front Plant Sci ; 5: 318, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25071801

RESUMO

Scarlet (Solanum aethiopicum) and gboma (S. macrocarpon) eggplants are major vegetable crops in sub-Saharan Africa. Together with their respective wild ancestors (S. anguivi and S. dasyphyllum) and intermediate cultivated-wild forms they constitute the so-called scarlet and gboma eggplant complexes. We used conventional descriptors and the high-throughput phenomics tool Tomato Analyzer for characterizing 63 accessions of the scarlet eggplant complex, including the four S. aethiopicum cultivar groups (Aculeatum, Gilo, Kumba, and Shum), Intermediate S. aethiopicum-S. anguivi forms, and S. anguivi, and 12 cultivated and wild accessions of the gboma eggplant complex. A large diversity was found between both complexes, showing that they are very well differentiated from each other. Within the scarlet eggplant complex, many significant differences were also found among cultivar groups, but more differences were found for fruit traits evaluated with Tomato Analyzer than with conventional descriptors. In particular, Tomato Analyzer phenomics characterization was useful for distinguishing small fruited groups (Shum, Intermediate, and S. anguivi), as well as groups for which few or no significant differences were observed for plant traits. Multivariate principal components analysis (PCA) separated well all groups, except the Intermediate group which plotted between S. anguivi and small fruited S. aethiopicum accessions. For the gboma eggplant complex, S. dasyphyllum was clearly distinguished from S. macrocarpon and an important diversity was found in the latter. The results have shown that both complexes are hypervariable and have provided insight into their diversity and relationships. The information obtained has important implications for the conservation and management of genetic resources as well as for the selection and breeding of both scarlet and gboma eggplants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...