Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Physiol Biochem ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639895

RESUMO

Identification of specific molecular markers for spermatogonial stem cells in teleost is crucial for enhancing the efficacy of reproductive biotechnologies in aquaculture, such as transplantation and surrogate production in fishes. Since it is not yet possible to distinguish spermatogonial stem cells of European eel (Anguilla anguilla) using specific molecular markers, we isolated spermatogonial cells from immature European eels to find these potential markers. We attempted this by studying three candidate genes: vasa, nanos2, and dnd1. Two vasa (vasa1 and vasa2) genes, nanos2, and dnd1 were identified, characterized, and studied in the muscle, testis, and isolated spermatogonia. Our results showed that vasa1 and vasa2 had the highest levels of expression when measured by qPCR. In situ hybridization and immunochemistry assays showed that the four genes were localized explicitly in type A spermatogonia. However, vasa1 and vasa2 exhibited stronger signals in the immature testicular tissue than the other two potential markers. According to this, vasa1 and vasa2 were found to be the most effective markers for spermatogonial cells in the European eel.

2.
BMC Genomics ; 20(1): 597, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31331264

RESUMO

BACKGROUND: The impossibility of closing the life cycle of the European eel (Anguilla anguilla) in captivity troubles the future of this critically endangered species. In addition, the European eel is a highly valued and demanded resource, thus the successful closing of its life cycle would have a substantial economic and ecological impact. With the aim of obtaining the highest gamete quality, the study of the effects of environmental factors, such as temperature, on reproductive performance may prove valuable. This is especially true for the exposure to cold water, which has been reported to improve sexual development in multiple other Actinopterygii species. RESULTS: European eel males treated with cold seawater (10 °C, T10) for 2 weeks showed an increase in the proliferation and differentiation of spermatogonial cells until the differentiated spermatogonial type A cell stage, and elevated testosterone and 11-ketotestosterone plasma levels. Transcriptomes from the tissues of the brain-pituitary-gonad (BPG) axis of T10 samples revealed a differential gene expression profile compared to the other experimental groups, with clustering in a principal component analysis and in heat maps of all differentially expressed genes. Furthermore, a functional analysis of differentially expressed genes revealed enriched gene ontology terms involved in the regulation of circadian rhythm, histone modification, meiotic nuclear division, and others. CONCLUSIONS: Cold seawater treatment had a clear effect on the activity of the BPG-axis of European eel males. In particular, our cold seawater treatment induces the synchronization and increased proliferation and differentiation of specific spermatogonial cells. In the transcriptomic results, genes related to thermoception were observed. This thermoception may have caused the observed effects through epigenetic mechanisms, since all analysed tissues further revealed differentially expressed genes involved in histone modification. The presented results support our hypothesis that a low temperature seawater treatment induces an early sexual developmental stage in European eels. This hypothesis is logical given that the average temperature experienced by eels in the early stages of their oceanic reproductive migration is highly similar to that of this cold seawater treatment. Further studies are needed to test whether a cold seawater treatment can improve the response of European eels to artificial hormonal treatment, as the results suggest.


Assuntos
Anguilla/crescimento & desenvolvimento , Encéfalo/efeitos dos fármacos , Temperatura Baixa , Hipófise/efeitos dos fármacos , Água do Mar/química , Maturidade Sexual/efeitos dos fármacos , Testículo/efeitos dos fármacos , Anguilla/genética , Anguilla/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Masculino , Anotação de Sequência Molecular , Hipófise/metabolismo , Hipófise/fisiologia , Testículo/metabolismo , Testículo/fisiologia , Fatores de Tempo , Transcriptoma/efeitos dos fármacos
3.
Theriogenology ; 133: 210-215, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31155036

RESUMO

The eels are teleost fishes from the order Anguilliformes that includes several species with high commercial value. Due to the high interest for aquaculture production of some eel species and for the need to restore eel species that are endangered, several research groups have directed their research toward developing protocols to cryopreserve the spermatozoa of Japanese eel (Anguilla japonica) and European eel (Anguilla anguilla). In this review, we provide an overview on the different protocols that have been developed so far. The first developed protocols used DMSO as cryoprotectant in both species with good success, obtaining sperm motilities of over 45% in Japanese eel and over 35% in European eel. Moreover, sperm cryopreserved using DMSO was successfully used in fertilization trials, although with low fertilization rates. However, recent studies show that DMSO produce epigenetic changes in eel sperm and therefore, the last developed protocols used methanol as cryoprotectant instead. Cryopreservation protocols using methanol as cryoprotectant, showed improved motility values in both Japanese and European eel. In addition, the latest protocols have been adapted to cryopreserve larger volumes of sperm of up to 5 mL, which is useful for larger scale fertilization trials. The present study introduces the state of the art and future perspectives of the eel sperm cryopreservation to be applied in aquaculture and biological conservation programs.


Assuntos
Anguilla/fisiologia , Preservação do Sêmen/veterinária , Espermatozoides/fisiologia , Animais , Criopreservação/métodos , Criopreservação/veterinária , Masculino , Preservação do Sêmen/métodos , Vitrificação
4.
PLoS One ; 14(6): e0218085, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31188893

RESUMO

Paralogues pairs are more frequently observed in eels (Anguilla sp.) than in other teleosts. The paralogues often show low phylogenetic distances; however, they have been assigned to the third round of whole genome duplication (WGD), shared by all teleosts (3R), due to their conserved synteny. The apparent contradiction of low phylogenetic difference and 3R conserved synteny led us to study the duplicated gene complement of the freshwater eels. With this aim, we assembled de novo transcriptomes of two highly relevant freshwater eel species: The European (Anguilla anguilla) and the Japanese eel (Anguilla japonica). The duplicated gene complement was analysed in these transcriptomes, and in the genomes and transcriptomes of other Actinopterygii species. The study included an assessment of neutral genetic divergence (4dTv), synteny, and the phylogenetic origins and relationships of the duplicated gene complements. The analyses indicated a high accumulation of duplications (1217 paralogue pairs) among freshwater eel genes, which may have originated in a WGD event after the Elopomorpha lineage diverged from the remaining teleosts, and thus not at the 3R. However, very similar results were observed in the basal Osteoglossomorpha and Clupeocephala branches, indicating that the specific genomic regions of these paralogues may still have been under tetrasomic inheritance at the split of the teleost lineages. Therefore, two potential hypotheses may explain the results: i) The freshwater eel lineage experienced an additional WGD to 3R, and ii) Some duplicated genomic regions experienced lineage specific rediploidization after 3R in the ancestor to freshwater eels. The supporting/opposing evidence for both hypotheses is discussed.


Assuntos
Evolução Biológica , Enguias/genética , Duplicação Gênica , Genoma , Filogenia , Transcriptoma , Animais , Enguias/classificação , Europa (Continente) , Água Doce , Ontologia Genética , Genética Populacional , Japão , Anotação de Sequência Molecular , Seleção Genética , Sintenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...