Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Microbiol Spectr ; 11(4): e0043223, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37284752

RESUMO

A green fluorescent protein (GFP)-based whole-cell biosensor (WCB-GFP) for monitoring arsenic (As) was developed in Bacillus subtilis. To this end, we designed a reporter gene fusion carrying the gfpmut3a gene under the control of the promoter/operator region of the arsenic operon (Pars::gfpmut3a) in the extrachromosomal plasmid pAD123. This construct was transformed into B. subtilis 168, and the resultant strain was used as a whole-cell biosensor (BsWCB-GFP) for the detection of As. The BsWCB-GFP was specifically activated by inorganic As(III) and As(V), but not by dimethylarsinic acid [DMA(V)], and exhibited high tolerance to the noxious effects of arsenic. Accordingly, after 12 h exposure, B. subtilis cells carrying the Pars::gfpmut3a fusion exhibited 50 and 90% lethal doses (LD50 and LD90) to As(III) of 0.89 mM and As 1.71 mM, respectively. Notably, dormant spores from the BsWCB-GFP were able to report the presence of As(III) in a concentration range from 0.1 to 1,000 µM 4 h after the onset of germination. In summary, the specificity and high sensitivity for As, as well as its ability to proliferate under concentrations of the metal that are considered toxic in water and soil, makes the B. subtilis biosensor developed here a potentially important tool for monitoring environmental samples contaminated with this pollutant. IMPORTANCE Arsenic (As) contamination of groundwater is associated with serious worldwide health risks. Detection of this pollutant at concentrations that are established as permissible for water consumption by WHO is a matter of significant interest. Here, we report the generation of a whole-cell biosensor for As detection in the Gram-positive spore former B. subtilis. This biosensor reports the presence of inorganic As, activating the expression of the green fluorescent protein (GFP) under the control of the promoter/operator of the ars operon. The biosensor can proliferate under concentrations of As(III) that are considered toxic in water and soil and detect this ion at concentrations as low as 0.1 µM. Of note, spores of the Pars-GFP biosensor exhibited the ability to detect As(III) following germination and outgrowth. Therefore, this novel tool has the potential to be directly applied to monitor As contamination in environmental samples.


Assuntos
Arsênio , Técnicas Biossensoriais , Poluentes Ambientais , Bacillus subtilis/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Arsênio/metabolismo , Esporos Bacterianos/genética , Esporos Bacterianos/química , Água/metabolismo , Poluentes Ambientais/metabolismo
2.
Biomedicines ; 11(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37189696

RESUMO

Severe inflammatory responses are associated with the misbalance of innate and adaptive immunity. TLRs, NLRs, and cytokine receptors play an important role in pathogen sensing and intracellular control, which remains unclear in COVID-19. This study aimed to evaluate IL-8 production in blood cells from COVID-19 patients in a two-week follow-up evaluation. Blood samples were taken at admission (t1) and after 14 days of hospitalization (t2). The functionality of TLR2, TLR4, TLR7/8, TLR9, NOD1, and NOD2 innate receptors and IL-12 and IFN-γ cytokine receptors was evaluated by whole blood stimulation with specific synthetic receptor agonists through the quantification of IL-8, TNF-α, or IFN-γ. At admission, ligand-dependent IL-8 secretion was 6.4, 13, and 2.5 times lower for TLR2, TLR4, and endosomal TLR7/8 receptors, respectively, in patients than in healthy controls. Additionally, IL-12 receptor-induced IFN-γ secretion was lower in COVID-19 patients than in healthy subjects. We evaluated the same parameters after 14 days and observed significantly higher responses for TLR2, TLR4, TLR7/8, TLR9, and NOD1, NOD2, and IFN-γ receptors. In conclusion, the low secretion of IL-8 through stimulation with agonists of TLR2, TLR4, TLR7/8, TLR9, and NOD2 at t1 suggests their possible contribution to immunosuppression following hyperinflammation in COVID-19 disease.

3.
Biomolecules ; 12(8)2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-36009042

RESUMO

Mycobacterium tuberculosis, the causal agent of one of the most devastating infectious diseases worldwide, can evade or modulate the host immune response and remain dormant for many years. In this review, we focus on identifying the local immune response induced in vivo by M. tuberculosis in the lungs of patients with active tuberculosis by analyzing data from untouched cells from bronchoalveolar lavage fluid (BALF) or exhaled breath condensate (EBC) samples. The most abundant resident cells in patients with active tuberculosis are macrophages and lymphocytes, which facilitate the recruitment of neutrophils. The cellular response is characterized by an inflammatory state and oxidative stress produced mainly by macrophages and T lymphocytes. In the alveolar microenvironment, the levels of cytokines such as interleukins (IL), chemokines, and matrix metalloproteinases (MMP) are increased compared with healthy patients. The production of cytokines such as interferon (IFN)-γ and IL-17 and specific immunoglobulin (Ig) A and G against M. tuberculosis indicate that the adaptive immune response is induced despite the presence of a chronic infection. The role of epithelial cells, the processing and presentation of antigens by macrophages and dendritic cells, as well as the role of tissue-resident memory T cells (Trm) for in situ vaccination remains to be understood.


Assuntos
Mycobacterium tuberculosis , Tuberculose Pulmonar , Tuberculose , Citocinas , Humanos , Imunidade
4.
Environ Monit Assess ; 194(8): 588, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840867

RESUMO

Water quality indices (WQIs) are numerical measures used by researchers and water managers to communicate water quality status to the public. This study analyzes the official databases from the CONAGUA monitoring network of the main tributary rivers in the middle basin of the San Pedro-Mezquital River in Durango, Mexico, for a 6-year period (2013-2018). We applied three WQIs to 432 data (18 sampling sites, four samples per year, 6 years): Canadian Council of Ministers of the Environment (CCME) WQI, National Sanitation Foundation (NSF) WQI, and Secretariat of Urban Development and Ecology (SEDUE) WQI. The Canadian index proved to be a flexible, appropriate, and rigorous methodology for assessing water quality based on its use. Results classify the water quality in the studied reservoirs as good, while river water was rated for public use, as marginal to very poor. No statistical significant differences in the quality of water between the rainy (June-October) and dry (November-May) seasons were found. However, tendency shows that in the rainy season the water quality was lower, mainly attributed to agricultural runoffs and bank erosion. The main contamination problem was the presence of fecal coliforms in high concentrations, which is associated to the high population density in the area, low sanitation efficiency, and multiple non-point discharges.


Assuntos
Água Potável , Poluentes Químicos da Água , Canadá , Monitoramento Ambiental/métodos , México , Rios , Qualidade da Água , Abastecimento de Água
5.
Int J Mol Sci ; 23(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35563384

RESUMO

Neutrophils play a crucial role in eliminating bacteria that invade the human body; however, cathepsin G can induce biofilm formation in a non-biofilm-forming Staphylococcus epidermidis 1457 strain, suggesting that neutrophil proteases may be involved in biofilm formation. Cathepsin G, cathepsin B, proteinase-3, and metalloproteinase-9 (MMP-9) from neutrophils were tested on the biofilm induction in commensal (skin isolated) and clinical non-biofilm-forming S. epidermidis isolates. From 81 isolates, 53 (74%) were aap+, icaA−, icaD− genotype, and without the capacity of biofilm formation under conditions of 1% glucose, 4% ethanol or 4% NaCl, but these 53 non-biofilm-forming isolates induced biofilm by the use of different neutrophil proteases. Of these, 62.3% induced biofilm with proteinase-3, 15% with cathepsin G, 10% with cathepsin B and 5% with MMP -9, where most of the protease-induced biofilm isolates were commensal strains (skin). In the biofilm formation kinetics analysis, the addition of phenylmethylsulfonyl fluoride (PMSF; a proteinase-3 inhibitor) showed that proteinase-3 participates in the cell aggregation stage of biofilm formation. A biofilm induced with proteinase-3 and DNAse-treated significantly reduced biofilm formation at an early time (initial adhesion stage of biofilm formation) compared to untreated proteinase-3-induced biofilm (p < 0.05). A catheter inoculated with a commensal (skin) non-biofilm-forming S. epidermidis isolate treated with proteinase-3 and another one without the enzyme were inserted into the back of a mouse. After 7 days of incubation period, the catheters were recovered and the number of grown bacteria was quantified, finding a higher amount of adhered proteinase-3-treated bacteria in the catheter than non-proteinase-3-treated bacteria (p < 0.05). Commensal non-biofilm-forming S. epidermidis in the presence of neutrophil cells significantly induced the biofilm formation when multiplicity of infection (MOI) 1:0.01 (neutrophil:bacteria) was used, but the addition of a cocktail of protease inhibitors impeded biofilm formation. A neutrophil:bacteria assay did not induce neutrophil extracellular traps (NETs). Our results suggest that neutrophils, in the presence of commensal non-biofilm-forming S. epidermidis, do not generate NETs formation. The effect of neutrophils is the production of proteases, and proteinase-3 releases bacterial DNA at the initial adhesion, favoring cell aggregation and subsequently leading to biofilm formation.


Assuntos
Neutrófilos , Peptídeo Hidrolases , Infecções Estafilocócicas , Staphylococcus epidermidis , Animais , Biofilmes , Catepsina B , Catepsina G , Metaloproteases , Camundongos , Mieloblastina , Neutrófilos/metabolismo , Peptídeo Hidrolases/metabolismo , Infecções Estafilocócicas/microbiologia
6.
Pure Appl Geophys ; 179(4): 1117-1137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431340

RESUMO

The massive explosion by the January 15, 2022 Hunga Tonga-Hunga Ha'apai volcano in Tonga triggered a trans-oceanic tsunami generated by coupled ocean and atmospheric shock waves during the explosion. The tsunami reached first the coast of Tonga, and later many coasts around the world. The shock wave went around the globe, causing sea perturbations as far as the Caribbean and the Mediterranean seas. We present the effects of the January 15, 2022 Tonga tsunami on the Mexican Pacific Coast, Gulf of Mexico, and Mexican Caribbean coast, and discuss the underrated hazard caused by great volcanic explosions, and the role of early tsunami warning systems, in particular in Mexico. The shock wave took about 7.5 h to reach the coast of Mexico, located about 9000 km away from the volcano, and the signal lasted several hours, about 133 h (5.13 days). The shock wave was the only cause for sea alterations on the Gulf of Mexico and Caribbean Sea, while at the Mexican Pacific coast both shock wave and the triggered tsunami by the volcano eruption and collapse affected this coast. The first tsunami waves recorded on the Mexican Pacific coast arrived around 12:35 on January 15, at the Lázaro Cárdenas, Michoacán tide gauge station. The maximum tsunami height exceeded 2 m at the Ensenada, Baja California, and Manzanillo, Colima, tide gauge stations. Most tsunami warning advisories, with two exceptions, reached communities via social media (Twitter and Facebook), but did not clearly state that people must stay away from the shore. We suggest that, although no casualties were reported in Mexico, tsunami warning advisories of far-field tsunamis and those triggered non-seismic sources, such as landslides and volcanic eruptions, should be included and improved to reach coastal communities timely, explaining the associated hazards on the coast. Supplementary Information: The online version contains supplementary material available at 10.1007/s00024-022-03017-9.

7.
Biomolecules ; 12(2)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35204769

RESUMO

Vitamin D has an immunomodulatory function and is involved in eliminating pathogens. Vitamin D deficiencies reported in Type 2 diabetes mellitus (T2DM) patients make them more susceptible to developing tuberculosis (TB). The macrophages are the immune cells that control intracellular pathogens by producing the antimicrobial peptide cathelicidin-LL37. This pathway involves TLR activation by pathogens, vitamin D receptor (VDR) ligation, and the enzyme 1α-hydroxylase Cytochrome P450 Family 27 Subfamily B Member 1 (CYP27B1). However, it is not clear whether the biological actions of vitamin D are affected by high glucose concentrations. This study aimed to evaluate the vitamin D contribution in the expression of VDR and CYP27B1, involved in the conversion of an inactive to an active form of vitamin D in the infected macrophages using M. tuberculosis as an infection model. The expression of LL37 and the nucleus translocation of VDR were evaluated as the readout of the response of vitamin D and determined if those processes are affected by glucose concentrations. Macrophages from healthy donors were cultured under glucose concentrations of 5.5, 15, or 30 mM, stimulated with vitamin D in inactive (25(OH)D3) or active (1,25(OH)2D3) forms, and infected with M. tuberculosis. The vitamin D-dependent induction of LL37 and the expression of VDR and CYP27B1 genes were analyzed by qPCR, and VDR translocation was analyzed in nuclear protein extracts by ELISA. M. tuberculosis downregulated the expression of LL37 regardless of the glucose concentration, whereas VDR and CYP27B1 upregulated it regardless of the glucose concentration. After evaluating two concentrations of vitamin D, 1 nM or 1 µM, the high concentration (1 µM) was necessary to restore the induction of LL37 expression in M. tuberculosis-infected macrophages. High concentrations of the inactive form of vitamin D restore the infected macrophages' ability to express LL37 regardless of the glucose concentration. This finding supports the idea that vitamin D administration in patients with T2DM could benefit TB control and prevention.


Assuntos
Diabetes Mellitus Tipo 2 , Vitamina D , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Humanos , Macrófagos/metabolismo , Vitamina D/farmacologia , Vitaminas
8.
Braz J Microbiol ; 53(1): 89-97, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35075617

RESUMO

The influenza A virus (IAV) H1N1pdm09 induces exacerbated inflammation, contributing to disease complications. Inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), favor an inflammatory response that aids viral replication and survival. A pathway by which spontaneous TNF-α production occurs involves either the reduction of Siglec-3 (CD33) levels or the absence of its ligand, sialic acid. Influenza virus uses sialic acid to enter cells by reducing their expression; however, the role of CD33 in IAV H1N1pdm09 stimulation and its relationship with inflammation have not yet been studied. To evaluate the role of CD33 in proinflammatory cytokine production in IAV H1N1pdm09 stimulation, peripheral blood mononuclear cells from healthy subjects were incubated with IAV H1N1pdm09. We observed that the infection caused an increase in the mRNA expression of proinflammatory cytokines such as TNF-α, interleukin (IL)-1ß, and IL-6 and a significant reduction in CD33 expression by monocytes at an early stage of infection. Additionally, suppressor of cytokine signaling 3 (SOCS-3) mRNA expression was upregulated at 6 h, and reactive oxygen species (ROS) production increased at 1.5 h. Moreover, a significant reduction in CD33 expression on the cell surface of monocytes from influenza patients or of IAV H1N1pdm09-stimulated monocytes incubated in vitro was observed by flow cytometry. The results suggest that the decrease in CD33 and increase of SOCS-3 expression induced by IAV H1N1pdm09 triggered TNF-α secretion and ROS production, suggesting an additional way to exacerbate inflammation during viral infection.


Assuntos
Vírus da Influenza A , Fator de Necrose Tumoral alfa , Citocinas/metabolismo , Humanos , Interleucina-6/genética , Leucócitos Mononucleares/metabolismo , Espécies Reativas de Oxigênio , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico , Fator de Necrose Tumoral alfa/genética
9.
Appl Nurs Res ; 66: 151482, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34602323

RESUMO

The environment plays a significant role in the global burden of disease for children. Climate-related disasters such as the 2017 Atlantic hurricane season are increasingly contributing to this burden. United Nations designated Small Island Developing States (SIDS) like Puerto Rico and the U.S. Virgin Islands are particularly at risk due to environmental health hazards caused by natural disasters, and health care structure vulnerabilities. United Nations' Sustainable Development Goals (UN SDG), specifically UN SDG 3, 13 and 17, focus on climate impacts via promotion of health preparedness and building partnerships between different sectors of society, respectively. The Pediatric Environmental Health Specialty Unit's (PEHSU) work is consistent with these most notably via the delivery of environmental health services along with training nurses, doctors, and other health professionals, formation of partnerships and linking resources. Therefore, training a diverse array of health professionals and linking these groups to relevant community resources is of utmost importance and has the potential to enhance the effective management and early prevention of top environmental health (EH) risks. Nursing is identified as a key health sector to engage for this initiative. This article describes the work of the Federal Region 2 PEHSU in Puerto Rico and the U.S. Virgin Islands that supports health professionals' knowledge building, development of environmental health services, and promotion of wide scale access to such services for children and families. The PEHSU's work is consistent with these most notably with regards to the delivery of environmental health services in pediatrics.


Assuntos
Desastres , Criança , Saúde Ambiental , Humanos , Porto Rico , Ilhas Virgens Americanas
10.
Paediatr Perinat Epidemiol ; 36(1): 36-44, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34164839

RESUMO

BACKGROUND: Emerging literature has documented heat-related impacts on child health, yet few studies have evaluated the effects of heat among children of different age groups and comparing emergency department (ED) and hospitalisation risks. OBJECTIVES: To examine the differing associations between high ambient temperatures and risk of ED visits and hospitalisations among children by age group in New York City (NYC). METHODS: We used New York Statewide Planning and Research Cooperative System (SPARCS) data on children aged 0-18 years admitted to NYC EDs (n = 2,252,550) and hospitals (n = 228,006) during the warm months (May-September) between 2005 and 2011. Using a time-stratified, case-crossover design, we estimated the risk of ED visits and hospitalisations associated with daily maximum temperature (Tmax) for children of all ages and by age group. RESULTS: The average Tmax over the study period was 80.3°F (range 50°, 104°F). Tmax conferred the greatest risk of ED visits for children aged 0-4, with a 6-day cumulative excess risk of 2.4% (95% confidence interval [CI] 1.7, 3.0) per 13°F (ie interquartile range) increase in temperature. Children and adolescents 5-12 years (0.8%, 95% CI 0.1, 1.6) and 13-18 years (1.4%, 95% CI 0.6, 2.3) are also sensitive to heat. For hospitalisations, only adolescents 13-18 years had increased heat-related risk, with a cumulative excess risk of 7.9% (95% CI 2.0, 14.2) per 13°F increase in Tmax over 85°F. CONCLUSIONS: This urban study in NYC reinforces that young children are particularly vulnerable to effects of heat, but also demonstrates the sensitivity of older children and adolescents as well. These findings underscore the importance of focussing on children and adolescents in targeting heat illness prevention and emergency response activities, especially as global temperatures continue to rise.


Assuntos
Serviço Hospitalar de Emergência , Temperatura Alta , Adolescente , Criança , Pré-Escolar , Hospitais , Humanos , Cidade de Nova Iorque/epidemiologia , Temperatura
11.
Front Immunol ; 12: 760468, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804048

RESUMO

Background: In the absence of a late marker of treatment failure or relapse in MDR-TB patients, biomarkers based on host-miRNAs coupled with M. tuberculosis-RNAs evaluated in extracellular vesicles (EVs) are an alternative follow-up for MDR-TB disease. Characterization of EVs cargo to identify differentially expressed miRNAs before and after treatment, and to identify M. tuberculosis-derived RNA in serum EVs from resistant TB patients. Methods: EVs were isolated from serum of 26 drug-resistant TB (DR-TB) patients and 16 healthy subjects. Differential expression of miRNAs in pooled exosomes from both untreated and treated patients was assessed and individually validated at different time points during treatment. In addition, M. tuberculosis RNA was amplified in the same samples by qPCR. Results: A multivariate analysis using miR-let-7e-5p, -197-3p and -223-3p were found to be a more sensitive discriminator between healthy individuals and those with TB for both DR-TB (AUC= 0.96, 95%, CI=0.907-1) and MDR-TB groups (AUC= 0.95, 95%, CI= 0.89-1). Upregulation of miR-let-7e-5p were observed at the time of M. tuberculosis negative culture T(3-5) for MDR-TB group or for long-term T(9-15) for MDR-TB group without diabetes (T2DM). A second pathogen-based marker based on 30kDa and 5KST sequences was detected in 33% of the MDR-TB patients after the intensive phase of treatment. The miR-let7e-5p is a candidate biomarker for long-term monitoring of treatment for the group of MDR-TB without T2DM. A dual marker of host-derived miR-let7e-5p and M. tuberculosis-derived RNA for monitoring-TB treatment based in serum EVs. Conclusion: A dual marker consisting of host-derived miR-let7e-5p and M. tuberculosis-derived RNA, could be an indicator of treatment failure or relapse time after treatment was completed.


Assuntos
MicroRNAs , Mycobacterium tuberculosis/genética , RNA Bacteriano/sangue , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Adulto , Idoso , Biomarcadores/sangue , Exossomos/genética , Exossomos/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tuberculose Resistente a Múltiplos Medicamentos/sangue , Tuberculose Resistente a Múltiplos Medicamentos/genética , Adulto Jovem
12.
Sci Rep ; 11(1): 21297, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34716394

RESUMO

The COVID-19 outbreak has caused over three million deaths worldwide. Understanding the pathology of the disease and the factors that drive severe and fatal clinical outcomes is of special relevance. Studying the role of the respiratory microbiota in COVID-19 is especially important as the respiratory microbiota is known to interact with the host immune system, contributing to clinical outcomes in chronic and acute respiratory diseases. Here, we characterized the microbiota in the respiratory tract of patients with mild, severe, or fatal COVID-19, and compared it to healthy controls and patients with non-COVID-19-pneumonia. We comparatively studied the microbial composition, diversity, and microbiota structure between the study groups and correlated the results with clinical data. We found differences in the microbial composition for COVID-19 patients, healthy controls, and non-COVID-19 pneumonia controls. In particular, we detected a high number of potentially opportunistic pathogens associated with severe and fatal levels of the disease. Also, we found higher levels of dysbiosis in the respiratory microbiota of patients with COVID-19 compared to the healthy controls. In addition, we detected differences in diversity structure between the microbiota of patients with mild, severe, and fatal COVID-19, as well as the presence of specific bacteria that correlated with clinical variables associated with increased risk of mortality. In summary, our results demonstrate that increased dysbiosis of the respiratory tract microbiota in patients with COVID-19 along with a continuous loss of microbial complexity structure found in mild to fatal COVID-19 cases may potentially alter clinical outcomes in patients. Taken together, our findings identify the respiratory microbiota as a factor potentially associated with the severity of COVID-19.


Assuntos
Bactérias/genética , COVID-19/microbiologia , COVID-19/mortalidade , Disbiose/microbiologia , Microbiota/genética , Sistema Respiratório/microbiologia , SARS-CoV-2/genética , Índice de Gravidade de Doença , Adolescente , Adulto , Idoso , COVID-19/patologia , Estudos de Casos e Controles , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Filogenia , RNA Ribossômico 16S/genética , Adulto Jovem
13.
Sci Rep ; 11(1): 19334, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588548

RESUMO

Landslide detection and susceptibility mapping are crucial in risk management and urban planning. Constant advance in digital elevation models accuracy and availability, the prospect of automatic landslide detection, together with variable processing techniques, stress the need to assess the effect of differences in input data on the landslide susceptibility maps accuracy. The main goal of this study is to evaluate the influence of variations in input data on landslide susceptibility mapping using a logistic regression approach. We produced 32 models that differ in (1) type of landslide inventory (manual or automatic), (2) spatial resolution of the topographic input data, (3) number of landslide-causing factors, and (4) sampling technique. We showed that models based on automatic landslide inventory present comparable overall prediction accuracy as those produced using manually detected features. We also demonstrated that finer resolution of topographic data leads to more accurate and precise susceptibility models. The impact of the number of landslide-causing factors used for calculations appears to be important for lower resolution data. On the other hand, even the lower number of causative agents results in highly accurate susceptibility maps for the high-resolution topographic data. Our results also suggest that sampling from landslide masses is generally more befitting than sampling from the landslide mass center. We conclude that most of the produced landslide susceptibility models, even though variable, present reasonable overall prediction accuracy, suggesting that the most congruous input data and techniques need to be chosen depending on the data quality and purpose of the study.

14.
Sci Total Environ ; 780: 146274, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34030289

RESUMO

This review presents a holistic overview of the occurrence, mobilization, and pathways of arsenic (As) from predominantly geogenic sources into different near-surface environmental compartments, together with the respective reported or potential impacts on human health in Latin America. The main sources and pathways of As pollution in this region include: (i) volcanism and geothermalism: (a) volcanic rocks, fluids (e.g., gases) and ash, including large-scale transport of the latter through different mechanisms, (b) geothermal fluids and their exploitation; (ii) natural lixiviation and accelerated mobilization from (mostly sulfidic) metal ore deposits by mining and related activities; (iii) coal deposits and their exploitation; (iv) hydrocarbon reservoirs and co-produced water during exploitation; (v) solute and sediment transport through rivers to the sea; (vi) atmospheric As (dust and aerosol); and (vii) As exposure through geophagy and involuntary ingestion. The two most important and well-recognized sources and mechanisms for As release into the Latin American population's environments are: (i) volcanism and geothermalism, and (ii) strongly accelerated As release from geogenic sources by mining and related activities. Several new analyses from As-endemic areas of Latin America emphasize that As-related mortality and morbidity continue to rise even after decadal efforts towards lowering As exposure. Several public health regulatory institutions have classified As and its compounds as carcinogenic chemicals, as As uptake can affect several organ systems, viz. dermal, gastrointestinal, peptic, neurological, respiratory, reproductive, following exposure. Accordingly, ingesting large amounts of As can damage the stomach, kidneys, liver, heart, and nervous system; and, in severe cases, may cause death. Moreover, breathing air with high As levels can cause lung damage, shortness of breath, chest pain, and cough. Further, As compounds, being corrosive, can also cause skin lesions or damage eyes, and long-term exposure to As can lead to cancer development in several organs.


Assuntos
Arsênio , Arsênio/análise , Carvão Mineral , Monitoramento Ambiental , Poluição Ambiental , Humanos , América Latina , Mineração
16.
J Immunol Res ; 2020: 8235149, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33005692

RESUMO

Childhood tuberculosis (TB) is a significant public health problem and the ninth leading cause of death worldwide. Progression of Mycobacterium tuberculosis infection to active disease depends on mycobacterial virulence, environmental diversity, and host susceptibility and immune response. In children, malnutrition and immaturity of the immune system contribute to an inadequate immune response. Coinfections, though rarely described in TB, might be associated with host immune deficiencies. Here, we describe the immunological evaluation of eight pediatric patients infected with a member of the M. tuberculosis complex, most of them with concomitant pulmonary infections (bacteria, viruses, or fungi). We assessed the functionality of several innate immunity receptors, IL-12 receptor, and IFN-γ receptor, as well as the antioxidant levels (glutathione), which are essential mechanisms for fighting intracellular pathogens such as M. tuberculosis. This study is aimed at developing a thorough immunological evaluation of patients with TB and a coinfection.


Assuntos
Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Adolescente , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Biomarcadores , Criança , Pré-Escolar , Citocinas/metabolismo , Gerenciamento Clínico , Suscetibilidade a Doenças/imunologia , Feminino , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Lactente , Masculino , Estresse Oxidativo , Medicina de Precisão/métodos , Receptores Toll-Like/metabolismo , Tuberculose/diagnóstico , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
17.
Sci Rep ; 10(1): 11452, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651547

RESUMO

Globally, instrumentally based assessments of tsunamigenic potential of subduction zones have underestimated the magnitude and frequency of great events because of their short time record. Historical and sediment records of large earthquakes and tsunamis have expanded the temporal data and estimated size of these events. Instrumental records suggests that the Mexican Subduction earthquakes produce relatively small tsunamis, however historical records and now geologic evidence suggest that great earthquakes and tsunamis have whipped the Pacific coast of Mexico in the past. The sediment marks of centuries old-tsunamis validate historical records and indicate that large tsunamigenic earthquakes have shaken the Guerrero-Oaxaca region in southern Mexico and had an impact on a bigger stretch of the coast than previously suspected. We present the first geologic evidence of great tsunamis near the trench of a subduction zone previously underestimated as potential source for great earthquakes and tsunamis. Two sandy tsunami deposits extend over 1.5 km inland of the coast. The youngest tsunami deposit is associated with the 1787 great earthquake, M 8.6, producing a giant tsunami that poured over the coast flooding 500 km alongshore the Mexican Pacific coast and up to 6 km inland. The oldest event from a less historically documented event occurred in 1537. The 1787 earthquake, and tsunami and a probable predecessor in 1537, suggest a plausible recurrence interval of 250 years. We prove that the common believe that great tsunamis do not occur on the Mexican Pacific coast cannot be sustained.

18.
Microb Pathog ; 139: 103851, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31715320

RESUMO

BACKGROUND: The presence of the human lung microbiota has been demonstrated in patients with different lung diseases, mainly in sputum samples. However, for study of the alveolar microbiota, a bronchoalveolar lavage (BAL) sample represents the lower respiratory tract (LRT) environment. It is currently unknown whether there is a specific alveolar microbiota profile in human lung diseases, such as pulmonary tuberculosis (TB) and interstitial pneumonia (IP). METHODS: BAL samples from six active TB patients, six IP patients and ten healthy volunteers were used for DNA extraction followed by amplification of the complete bacterial 16S ribosomal RNA gene (16S rDNA). The 16S rDNA was sequenced with a MiSeq Desktop Sequencer, and the data were analysed by QIIME software for taxonomic assignment. RESULTS: The alveolar microbiota in TB and IP patients and healthy volunteers was characterized by six dominant phyla, Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, Fusobacteria and Cyanobacteria. A significant reduction in the abundance of Firmicutes was observed in IP patients. In TB and IP patients, the diversity of the alveolar microbiota was diminished, characterized by a significant reduction in the abundance of the Streptococcus genus and associated with increased Mycobacterium abundance in TB patients and diminished Acinetobacter abundance in IP patients with respect to their abundances in healthy volunteers. However, an important difference was observed between TB and IP patients: the Fusobacterium abundance was significantly reduced in TB patients. Exclusive genera that were less abundant in patients than in healthy volunteers were characterized for each study group. CONCLUSIONS: This study shows that the alveolar microbiota profile in BAL samples from TB and IP patients, representing infectious and non-infectious lung diseases, respectively, is characterized by decreased diversity.


Assuntos
Doenças Pulmonares Intersticiais/microbiologia , Microbiota , Tuberculose Pulmonar/microbiologia , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Adulto , Idoso , Bacteroidetes/isolamento & purificação , Bacteroidetes/metabolismo , Lavagem Broncoalveolar , Cianobactérias/isolamento & purificação , Cianobactérias/metabolismo , Feminino , Firmicutes/isolamento & purificação , Firmicutes/metabolismo , Fusobactérias/isolamento & purificação , Fusobactérias/metabolismo , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Proteobactérias/isolamento & purificação , Proteobactérias/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/isolamento & purificação , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/isolamento & purificação , Sistema Respiratório/microbiologia , Escarro/microbiologia , Adulto Jovem
19.
J Immunol Res ; 2019: 1297131, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31886294

RESUMO

BACKGROUND: The treatment of latent tuberculosis infection (LTBI) in individuals at risk of reactivation is essential for tuberculosis control. However, blood biomarkers associated with LTBI treatment have not been identified. METHODS: Blood samples from tuberculin skin test (TST) reactive individuals were collected before and after one and six months of isoniazid (INH) therapy. Peripheral mononuclear cells (PBMC) were isolated, and an in-house interferon-γ release assay (IGRA) was performed. Expression of chemokine ligand 4 (CCL4), chemokine ligand 10 (CXCL10), chemokine ligand 11 (CXCL11), interferon alpha (IFNA), radical S-adenosyl methionine domain-containing 2 (RSAD2), ubiquitin-specific peptidase 18 (USP18), interferon-induced protein 44 (IFI44), interferon-induced protein 44 like (IFI44L), interferon-induced protein tetratricopeptide repeats 1(IFIT1), and interleukin 2 receptor subunit alpha (IL2RA) mRNA levels were assessed by qPCR before, during, and after INH treatment. RESULTS: We observed significantly lower relative abundances of USP18, IFI44L, IFNA, and IL2RA transcripts in PBMC from IGRA-positive individuals compared to levels in IGRA-negative individuals before INH therapy. Also, relative abundance of CXCL11 was significantly lower in IGRA-positive than in IGRA-negative individuals before and after one month of INH therapy. However, the relative abundance of CCL4, CXCL10, and CXCL11 mRNA was significantly decreased and that of IL2RA and USP18 significantly increased after INH therapy, regardless of the IGRA result. Our results show that USP18, IFI44L, IFIT1, and IL2RA relative abundances increased significantly, meanwhile the relative abundance of CCL4, CXCL11, and IFNA decreased significantly after six months of INH therapy in TST-positive individuals. CONCLUSIONS: Changes in the profiles of USP18, IL2RA, IFNA, CCL4, and CXCL11 expressions during INH treatment in TST-positive individuals, regardless of IGRA status, are potential tools for monitoring latent tuberculosis treatment.


Assuntos
Expressão Gênica , Subunidade alfa de Receptor de Interleucina-2/genética , Tuberculose Latente/genética , Tuberculose Latente/microbiologia , Ubiquitina Tiolesterase/genética , Adulto , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Biomarcadores , Feminino , Humanos , Testes de Liberação de Interferon-gama , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Isoniazida/farmacologia , Isoniazida/uso terapêutico , Tuberculose Latente/diagnóstico , Tuberculose Latente/tratamento farmacológico , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Teste Tuberculínico , Ubiquitina Tiolesterase/metabolismo , Adulto Jovem
20.
J Immunol Res ; 2019: 1462098, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31815150

RESUMO

Diabetes mellitus, a metabolic disease characterized by hyperglycemia and poor glucose control, is a risk factor for Mycobacterium tuberculosis (M. tuberculosis) infection and the development of active tuberculosis. To evaluate whether M. tuberculosis infection susceptibility is associated with an intrinsic factor in monocytes from type 2 diabetes (T2D) patients or it is associated with hyperglycemia per se, we analyzed TLR-2 and TLR-4 expression by flow cytometry and the cytokines IL-1ß, IL-6, IL-8, IL-10, and TNF-α by cytometric bead array assays, either stimulated with TLR-2 and TLR-4 ligands or infected with M. tuberculosis in the whole blood from T2D patients (n = 43) and healthy subjects (n = 26) or in CD14+ monocytes from healthy subjects cultured in high glucose (HG) (30 mM). The intracellular growth of M. tuberculosis was evaluated by CFU counts at 0, 1, and 3 days in both monocytes from T2D patients and monocytes from healthy subjects cultured in HG. We did not find significant differences in TLR expression, cytokine production, or growth of M. tuberculosis in monocytes from T2D patients compared with those in monocytes from healthy subjects. Despite these results, in vitro assays of monocytes cultured with 30 mM glucose led to significantly increased TLR-2 and TLR-4 basal expression compared to those of monocytes cultured with 11 mM glucose (P < 0.05). Conversely, the production of IL-6 by TLR-2 ligand stimulation, of IL-1ß, IL-6, and IL-8 by TLR-4 ligand stimulation, and of IL-8 by M. tuberculosis infection significantly decreased in monocytes cultured in HG (P < 0.05). Additionally, the intracellular survival of M. tuberculosis increased in monocytes in HG after day 3 of culture (P < 0.05). In conclusion, HG decreased IL-8 production and the intracellular growth control of M. tuberculosis by monocytes, supporting the hypothesis that hyperglycemia plays an important role in the impaired immune responses to M. tuberculosis in patients with T2D.


Assuntos
Diabetes Mellitus Tipo 2/imunologia , Glucose/farmacologia , Hiperglicemia/imunologia , Monócitos/imunologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Tuberculose Pulmonar/imunologia , Adulto , Idoso , Estudos de Casos e Controles , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiologia , Diabetes Mellitus Tipo 2/patologia , Feminino , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/imunologia , Glucose/metabolismo , Humanos , Hiperglicemia/metabolismo , Hiperglicemia/microbiologia , Hiperglicemia/patologia , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-8/genética , Interleucina-8/imunologia , Receptores de Lipopolissacarídeos/genética , Receptores de Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Lipoproteínas/farmacologia , Masculino , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Monócitos/microbiologia , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/patogenicidade , Cultura Primária de Células , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Tuberculose Pulmonar/metabolismo , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...