Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Ophthalmol (Lausanne) ; 4: 1362350, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38984127

RESUMO

Introduction: Cataract is the leading cause of blindness among the elderly worldwide. Twin and family studies support an important role for genetic factors in cataract susceptibility with heritability estimates up to 58%. To date, 55 loci for cataract have been identified by genome-wide association studies (GWAS), however, much work remains to identify the causal genes. Here, we conducted a transcriptome-wide association study (TWAS) of cataract to prioritize causal genes and identify novel ones, and examine the impact of their expression. Methods: We performed tissue-specific and multi-tissue TWAS analyses to assess associations between imputed gene expression from 54 tissues (including 49 from the Genotype Tissue Expression (GTEx) Project v8) with cataract using FUSION software. Meta-analyzed GWAS summary statistics from 59,944 cataract cases and 478,571 controls, all of European ancestry and from two cohorts (GERA and UK Biobank) were used. We then examined the expression of the novel genes in the lens tissue using the iSyTE database. Results: Across tissue-specific and multi-tissue analyses, we identified 99 genes for which genetically predicted gene expression was associated with cataract after correcting for multiple testing. Of these 99 genes, 20 (AC007773.1, ANKH, ASIP, ATP13A2, CAPZB, CEP95, COQ6, CREB1, CROCC, DDX5, EFEMP1, EIF2S2, ESRRB, GOSR2, HERC4, INSRR, NIPSNAP2, PICALM, SENP3, and SH3YL1) did not overlap with previously reported cataract-associated loci. Tissue-specific analysis identified 202 significant gene-tissue associations for cataract, of which 166 (82.2%), representing 9 unique genes, were attributed to the previously reported 11q13.3 locus. Tissue-enrichment analysis revealed that gastrointestinal tissues represented one of the highest proportions of the Bonferroni-significant gene-tissue associations (21.3%). Moreover, this gastrointestinal tissue type was the only anatomical category significantly enriched in our results, after correcting for the number of tissue donors and imputable genes for each reference panel. Finally, most of the novel cataract genes (e.g., Capzb) were robustly expressed in iSyTE lens data. Discussion: Our results provide evidence of the utility of imputation-based TWAS approaches to characterize known GWAS risk loci and identify novel candidate genes that may increase our understanding of cataract etiology. Our findings also highlight the fact that expression of genes associated with cataract susceptibility is not necessarily restricted to lens tissue.

2.
HGG Adv ; 4(3): 100211, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37415806

RESUMO

Genome-wide association studies (GWASs) have identified more than 130 genetic susceptibility loci for migraine; however, how most of these loci impact migraine development is unknown. To identify novel genes associated with migraine and interpret the transcriptional products of those genes, we conducted a transcriptome-wide association study (TWAS). We performed tissue-specific and multi-tissue TWAS analyses to assess associations between imputed gene expression from 53 tissues and migraine susceptibility using FUSION software. Meta-analyzed GWAS summary statistics from 26,052 migraine cases and 487,214 controls, all of European ancestry and from two cohorts (the Kaiser Permanente GERA and the UK Biobank), were used. We evaluated the associations for genes after conditioning on variant-level effects from GWAS, and we tested for colocalization of GWAS migraine-associated loci and expression quantitative trait loci (eQTLs). Across tissue-specific and multi-tissue analyses, we identified 53 genes for which genetically predicted gene expression was associated with migraine after correcting for multiple testing. Of these 53 genes, 10 (ATF5, CNTNAP1, KTN1-AS1, NEIL1, NEK4, NNT, PNKP, RUFY2, TUBG2, and VAT1) did not overlap known migraine-associated loci identified from GWAS. Tissue-specific analysis identified 45 gene-tissue pairs and cardiovascular tissues represented the highest proportion of the Bonferroni-significant gene-tissue pairs (n = 22 [49%]), followed by brain tissues (n = 6 [13%]), and gastrointestinal tissues (n = 4 [9%]). Colocalization analyses provided evidence of shared genetic variants underlying eQTL and GWAS signals in 18 of the gene-tissue pairs (40%). Our TWAS reports novel genes for migraine and highlights the important contribution of brain, cardiovascular, and gastrointestinal tissues in migraine susceptibility.


Assuntos
DNA Glicosilases , Transtornos de Enxaqueca , Humanos , Transcriptoma/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas/genética , Transtornos de Enxaqueca/genética , Proteínas de Membrana/genética , DNA Glicosilases/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Enzimas Reparadoras do DNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...