Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 12995, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158710

RESUMO

Voltage-gated sodium (NaV) channels have been related with cell migration and invasiveness in human cancers. We previously reported the contribution of NaV1.6 channels activity with the invasion capacity of cervical cancer (CeCa) positive to Human Papilloma Virus type 16 (HPV16), which accounts for 50% of all CeCa cases. Here, we show that NaV1.6 gene (SCN8A) overexpression is a general characteristic of CeCa, regardless of the HPV type. In contrast, no differences were observed in NaV1.6 channel expression between samples of non-cancerous and cervical intraepithelial neoplasia. Additionally, we found that CeCa cell lines, C33A, SiHa, CaSki and HeLa, express mainly the splice variant of SCN8A that lacks exon 18, shown to encode for an intracellularly localized NaV1.6 channel, whereas the full-length adult form was present in CeCa biopsies. Correlatively, patch-clamp experiments showed no evidence of whole-cell sodium currents (INa) in CeCa cell lines. Heterologous expression of full-length NaV1.6 isoform in C33A cells produced INa, which were sufficient to significantly increase invasion capacity and matrix metalloproteinase type 2 (MMP-2) activity. These data suggest that upregulation of NaV1.6 channel expression occurs when cervical epithelium have been transformed into cancer cells, and that NaV1.6-mediated invasiveness of CeCa cells involves MMP-2 activity. Thus, our findings support the notion about using NaV channels as therapeutic targets against cancer metastasis.


Assuntos
Papillomavirus Humano 16/isolamento & purificação , Metaloproteinase 2 da Matriz/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Invasividade Neoplásica , Neoplasias do Colo do Útero/fisiopatologia , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Humanos , Metaloproteinase 2 da Matriz/genética , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Técnicas de Patch-Clamp
2.
PLoS One ; 13(2): e0193490, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29474447

RESUMO

Voltage-gated calcium channels contain four highly conserved transmembrane helices known as S4 segments that exhibit a positively charged residue every third position, and play the role of voltage sensing. Nonetheless, the activation range between high-voltage (HVA) and low-voltage (LVA) activated calcium channels is around 30-40 mV apart, despite the high level of amino acid similarity within their S4 segments. To investigate the contribution of S4 voltage sensors for the low-voltage activation characteristics of CaV3.3 channels we constructed chimeras by swapping S4 segments between this LVA channel and the HVA CaV1.2 channel. The substitution of S4 segment of Domain II in CaV3.3 by that of CaV1.2 (chimera IIS4C) induced a ~35 mV shift in the voltage-dependence of activation towards positive potentials, showing an I-V curve that almost overlaps with that of CaV1.2 channel. This HVA behavior induced by IIS4C chimera was accompanied by a 2-fold decrease in the voltage-dependence of channel gating. The IVS4 segment had also a strong effect in the voltage sensing of activation, while substitution of segments IS4 and IIIS4 moved the activation curve of CaV3.3 to more negative potentials. Swapping of IIS4 voltage sensor influenced additional properties of this channel such as steady-state inactivation, current decay, and deactivation. Notably, Domain I voltage sensor played a major role in preventing CaV3.3 channels to inactivate from closed states at extreme hyperpolarized potentials. Finally, site-directed mutagenesis in the CaV3.3 channel revealed a partial contribution of the S4-S5 linker of Domain II to LVA behavior, with synergic effects observed in double and triple mutations. These findings indicate that IIS4 and, to a lesser degree IVS4, voltage sensors are crucial in determining the LVA properties of CaV3.3 channels, although the accomplishment of this function involves the participation of other structural elements like S4-S5 linkers.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Fenômenos Eletrofisiológicos , Sequência de Aminoácidos , Animais , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo T/química , Células HEK293 , Humanos , Ativação do Canal Iônico , Cinética , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...