Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Nat Commun ; 15(1): 3059, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637500

RESUMO

The 2023 monkeypox (mpox) epidemic was caused by a subclade IIb descendant of a monkeypox virus (MPXV) lineage traced back to Nigeria in 1971. Person-to-person transmission appears higher than for clade I or subclade IIa MPXV, possibly caused by genomic changes in subclade IIb MPXV. Key genomic changes could occur in the genome's low-complexity regions (LCRs), which are challenging to sequence and are often dismissed as uninformative. Here, using a combination of highly sensitive techniques, we determine a high-quality MPXV genome sequence of a representative of the current epidemic with LCRs resolved at unprecedented accuracy. This reveals significant variation in short tandem repeats within LCRs. We demonstrate that LCR entropy in the MPXV genome is significantly higher than that of single-nucleotide polymorphisms (SNPs) and that LCRs are not randomly distributed. In silico analyses indicate that expression, translation, stability, or function of MPXV orthologous poxvirus genes (OPGs), including OPG153, OPG204, and OPG208, could be affected in a manner consistent with the established "genomic accordion" evolutionary strategies of orthopoxviruses. We posit that genomic studies focusing on phenotypic MPXV differences should consider LCR variability.


Assuntos
Mpox , Orthopoxvirus , Poxviridae , Humanos , Monkeypox virus/genética , Genômica , Mpox/genética
2.
Front Endocrinol (Lausanne) ; 15: 1346317, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544694

RESUMO

Introduction: Obesity is a chronic condition associated with low-grade inflammation mainly due to immune cell infiltration of white adipose tissue (WAT). WAT is distributed into two main depots: subcutaneous WAT (sWAT) and visceral WAT (vWAT), each with different biochemical features and metabolic roles. Proinflammatory cytokines including interleukin (IL)-16 are secreted by both adipocytes and infiltrated immune cells to upregulate inflammation. IL-16 has been widely studied in the peripheral proinflammatory immune response; however, little is known about its role in adipocytes in the context of obesity. Aim & Methods: We aimed to study the levels of IL-16 in WAT derived from sWAT and vWAT depots of humans with obesity and the role of this cytokine in palmitate-exposed 3T3-L1 adipocytes. Results: The results demonstrated that IL-16 expression was higher in vWAT compared with sWAT in individuals with obesity. In addition, IL-16 serum levels were higher in patients with obesity compared with normal-weight individuals, increased at 6 months after bariatric surgery, and at 12 months after surgery decreased to levels similar to before the intervention. Our in vitro models showed that IL-16 could modulate markers of adipogenesis (Pref1), lipid metabolism (Plin1, Cd36, and Glut4), fibrosis (Hif1a, Col4a, Col6a, and Vegf), and inflammatory signaling (IL6) during adipogenesis and in mature adipocytes. In addition, lipid accumulation and glycerol release assays suggested lipolysis alteration. Discussion: Our results suggest a potential role of IL-16 in adipogenesis, lipid and glucose homeostasis, fibrosis, and inflammation in an obesity context.


Assuntos
Adipogenia , Interleucina-16 , Humanos , Fibrose , Inflamação/metabolismo , Lipídeos , Obesidade/metabolismo
3.
Eur J Endocrinol ; 190(3): 201-210, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38375549

RESUMO

OBJECTIVE: T lymphocytes from visceral and subcutaneous white adipose tissues (vWAT and sWAT, respectively) can have opposing roles in the systemic metabolic changes associated with obesity. However, few studies have focused on this subject. Claudin-1 (CLDN1) is a protein involved canonically in tight junctions and tissue paracellular permeability. We evaluated T-lymphocyte gene expression in vWAT and sWAT and in the whole adipose depots in human samples. METHODS: A Clariom D-based transcriptomic analysis was performed on T lymphocytes magnetically separated from vWAT and sWAT from patients with obesity (Cohort 1; N = 11). Expression of candidate genes resulting from that analysis was determined in whole WAT from individuals with and without obesity (Cohort 2; patients with obesity: N = 13; patients without obesity: N = 14). RESULTS: We observed transcriptional differences between T lymphocytes from sWAT compared with vWAT. Specifically, CLDN1 expression was found to be dramatically induced in vWAT T cells relative to those isolated from sWAT in patients with obesity. CLDN1 was also induced in obesity in vWAT and its expression correlates with genes involved in inflammation, fibrosis, and adipogenesis. CONCLUSION: These results suggest that CLDN1 is a novel marker induced in obesity and differentially expressed in T lymphocytes infiltrated in human vWAT as compared with sWAT. This protein may have a crucial role in the crosstalk between T lymphocytes and other adipose tissue cells and may contribute to inflammation, fibrosis, and alter homeostasis and promote metabolic disease in obesity.


Assuntos
Tecido Adiposo Branco , Claudina-1 , Obesidade , Humanos , Tecido Adiposo Branco/metabolismo , Diferenciação Celular , Claudina-1/metabolismo , Fibrose , Inflamação/metabolismo , Obesidade/complicações , Linfócitos T/metabolismo
4.
Aging Cell ; 23(2): e14047, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37994388

RESUMO

Orexigenic neurons expressing agouti-related protein (AgRP) and neuropeptide Y in the arcuate nucleus (ARC) of the hypothalamus are activated in response to dynamic variations in the metabolic state, including exercise. We previously observed that carnitine palmitoyltransferase 1a (CPT1A), a rate-limiting enzyme of mitochondrial fatty acid oxidation, is a key factor in AgRP neurons, modulating whole-body energy balance and fluid homeostasis. However, the effect of CPT1A in AgRP neurons in aged mice and during exercise has not been explored yet. We have evaluated the physical and cognitive capacity of adult and aged mutant male mice lacking Cpt1a in AgRP neurons (Cpt1a KO). Adult Cpt1a KO male mice exhibited enhanced endurance performance, motor coordination, locomotion, and exploration compared with control mice. No changes were observed in anxiety-related behavior, cognition, and muscle strength. Adult Cpt1a KO mice showed a reduction in gastrocnemius and tibialis anterior muscle mass. The cross-sectional area (CSA) of these muscles were smaller than those of control mice displaying a myofiber remodeling from type II to type I fibers. In aged mice, changes in myofiber remodeling were maintained in Cpt1a KO mice, avoiding loss of physical capacity during aging progression. Additionally, aged Cpt1a KO mice revealed better cognitive skills, reduced inflammation, and oxidative stress in the hypothalamus and hippocampus. In conclusion, CPT1A in AgRP neurons appears to modulate health and protects against aging. Future studies are required to clarify whether CPT1A is a potential antiaging candidate for treating diseases affecting memory and physical activity.


Assuntos
Carnitina O-Palmitoiltransferase , Envelhecimento Saudável , Animais , Masculino , Camundongos , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-38131730

RESUMO

To understand whether patient safety and human factors are considered in healthcare technology procurement, we analyzed the case of infusion pumps as their use critically affects patient safety. We reviewed infusion pump procurements in the Spanish Public Sector Procurement Database. Sixty-three batches in 29 tenders for supplying 12.224 volumetric and syringe infusion pumps and consumables for an overall budget of EUR 30.4 M were identified and reviewed. Concepts related to "ease of use" were identified in the selection requirements of 35 (55.6%) batches, as part of the criteria for the selection of pumps in 23 (36.5%) batches, related to "intuitiveness" in the selection requirements of 35 (55.6%) batches, and in the criteria in 10 (15.9%) batches. No method to evaluate the ease of use, intuitiveness, or usability was mentioned. A review of the procurement teams responsible for the evaluation of the tenders showed no reported human factors or patient safety expertise. We conclude that infusion pump procurement considers usability as a relevant criterion for selection. However, no human factor experts nor specific methods for evaluation of the technology in this field are usually defined. Potential room for refining the selection of healthcare technology to improve patient safety is detected.


Assuntos
Bombas de Infusão , Segurança do Paciente , Humanos , Bases de Dados Factuais , Instalações de Saúde , Espanha
7.
Nutrients ; 15(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37764752

RESUMO

The alarming increase in obesity and its related metabolic health complications, such as type 2 diabetes, has evolved into a global pandemic. Obesity is mainly characterized by excessive accumulation of adipose tissue, primarily due to an imbalance between energy intake and expenditure. Prolonged positive energy balance leads to the expansion of existing adipocytes (hypertrophy) and/or an increase in preadipocyte and adipocyte number (hyperplasia) to accommodate excess energy intake. However, obesity is not solely defined by increases in adipocyte size and number. The turnover of adipose tissue cells also plays a crucial role in the development and progression of obesity. Cell turnover encompasses the processes of cell proliferation, differentiation, and apoptosis, which collectively regulate the overall cell population within adipose tissue. Lipid turnover represents another critical factor that influences how adipose tissue stores and releases energy. Our understanding of adipose tissue lipid turnover in humans remains limited due to the slow rate of turnover and methodological constraints. Nonetheless, disturbances in lipid metabolism are strongly associated with altered adipose tissue lipid turnover. In obesity, there is a decreased rate of triglyceride removal (lipolysis followed by oxidation), leading to the accumulation of triglycerides over time. This review provides a comprehensive summary of findings from both in vitro and in vivo methods used to study the turnover of adipose cells and lipids in metabolic health and disease. Understanding the mechanisms underlying cellular and lipid turnover in obesity is essential for developing strategies to mitigate the adverse effects of excess adiposity.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Tecido Adiposo , Adipócitos , Obesidade , Lipídeos
8.
Obes Rev ; 24(12): e13627, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37608466

RESUMO

Obesity is the leading risk factor for the development of type 2 diabetes and cardiovascular diseases. Childhood obesity represents an alarming health challenge because children with obesity are prone to remain with obesity throughout their life and have an increased morbidity and mortality risk. The ability of adipose tissue to store lipids and expand in size during excessive calorie intake is its most remarkable characteristic. Cellular and lipid turnovers determine adipose tissue size and are closely related with metabolic status. The mechanisms through which adipose tissue expands and how this affects systemic metabolic homeostasis are still poorly characterized. Furthermore, the mechanism through which increased adiposity extends from childhood to adulthood and its implications in metabolic health are in most part, still unknown. More studies on adipose tissue development in healthy and children with obesity are urgently needed. In the present review, we summarize the dynamics of white adipose tissue, from developmental origins to the mechanisms that allows it to grow and expand throughout lifetime and during obesity in children and in different mouse models used to address this largely unknown field. Specially, highlighting the role that excessive adiposity during the early life has on future's adipose tissue dynamics and individual's health.


Assuntos
Diabetes Mellitus Tipo 2 , Obesidade Infantil , Criança , Animais , Camundongos , Humanos , Adolescente , Adulto Jovem , Obesidade Infantil/etiologia , Obesidade Infantil/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo , Adiposidade
9.
Methods Cell Biol ; 179: 51-57, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37625879

RESUMO

Celiac disease is a highly prevalent immune-mediated enteropathy that develops in genetically susceptible individuals expressing HLA-DQ2 or HLA-DQ8 after ingestion of gluten and results in decreased quality of life and increased morbidity. This pathology is triggered by immunogenic peptides generated from gliadins present in gluten, which act on the intestinal mucosa in a context of high intestinal permeability, activating the innate and adaptive response of the immune system. Several in vivo rodent models attempt to reproduce some phases of the intestinal inflammatory process that occurs in celiac disease. Allergic sensitization to gluten simulates, or enhances in some animal models, the loss of tolerance to gliadin peptides and the initial events that lead to celiac disease in a specific genetic or environmental context. Here we describe a simple method for performing gliadin sensitization in an in vivo animal model.


Assuntos
Doença Celíaca , Gliadina , Animais , Doença Celíaca/genética , Qualidade de Vida , Glutens , Administração Oral
10.
Front Cell Infect Microbiol ; 13: 1163467, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396301

RESUMO

Introduction: West Nile virus (WNV) and Usutu virus (USUV) are emerging zoonotic arboviruses sharing the same life cycle with mosquitoes as vectors and wild birds as reservoir hosts. The main objective of this study was to characterize the pathogenicity and course of infection of two viral strains (WNV/08 and USUV/09) co-circulating in Southern Spain in a natural host, the red-legged partridge (Alectoris rufa), and to compare the results with those obtained with the reference strain WNV/NY99. Methods: WNV inoculated birds were monitored for clinical and analytical parameters (viral load, viremia, and antibodies) for 15 days post-inoculation. Results and discussion: Partridges inoculated with WNV/NY99 and WNV/08 strains showed clinical signs such as weight loss, ruffled feathers, and lethargy, which were not observed in USUV/09-inoculated individuals. Although statistically significant differences in mortality were not observed, partridges inoculated with WNV strains developed significantly higher viremia and viral loads in blood than those inoculated with USUV. In addition, the viral genome was detected in organs and feathers of WNV-inoculated partridges, while it was almost undetectable in USUV-inoculated ones. These experimental results indicate that red-legged partridges are susceptible to the assayed Spanish WNV with pathogenicity similar to that observed for the prototype WNV/NY99 strain. By contrast, the USUV/09 strain was not pathogenic for this bird species and elicited extremely low viremia levels, demonstrating that red-legged partridges are not a competent host for the transmission of this USUV strain.


Assuntos
Doenças das Aves , Galliformes , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Humanos , Animais , Febre do Nilo Ocidental/veterinária , Espanha , Viremia/veterinária , Mosquitos Vetores , Vírus do Nilo Ocidental/genética
11.
Front Cell Infect Microbiol ; 13: 1155867, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469597

RESUMO

In Spain, the largest human West Nile virus (WNV) outbreak among humans was reported in 2020, constituting the second most important outbreak in Europe that season. Extremadura (southwestern Spain) was one of the affected areas, reporting six human cases. The first autochthonous human case in Spain was reported in Extremadura in 2004, and no other human cases were reported until 2020. In this work, we describe the first WNV human outbreak registered in Extremadura, focusing on the most important clinical aspects, diagnostic results, and control actions which followed. In 2020, from September to October, human WNV infections were diagnosed using a combination of molecular and serological methods (an in-house specific qRT-PCR and a commercial ELISA for anti-WNV IgM and IgG antibodies) and by analysing serum, urine, and/or cerebrospinal fluid samples. Serological positive serum samples were further tested using commercial kits against related flaviviruses Usutu and Tick-borne encephalitis in order to analyse serological reactivity and to confirm the results by neutralisation assays. In total, six cases of WNV infection (five with neuroinvasive disease and one with fever) were identified. Clinical presentation and laboratory findings are described. No viral RNA was detected in any of the analysed samples, but serological cross-reactivity was detected against the other tested flaviviruses. Molecular and serological methods for WNV detection in various samples as well as differential diagnosis are recommended. The largest number of human cases of WNV infection ever registered in Extremadura, Spain, occurred in 2020 in areas where circulation of WNV and other flaviviruses has been previously reported in humans and animals. Therefore, it is necessary to enhance surveillance not only for the early detection and implementation of response measures for WNV but also for other emerging flaviviruses that could be endemic in this area.


Assuntos
Flavivirus , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Vírus do Nilo Ocidental/genética , Febre do Nilo Ocidental/diagnóstico , Febre do Nilo Ocidental/epidemiologia , Espanha/epidemiologia , Anticorpos Antivirais
12.
Emerg Microbes Infect ; 12(2): 2231556, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37377355

RESUMO

West Nile virus (WNV) is a neurotropic flavivirus transmitted by the bites of infected mosquitoes. Severe forms of West Nile disease (WND) can curse with meningitis, encephalitis or acute flaccid paralysis. A better understanding of the physiopathology associated with disease progression is mandatory to find biomarkers and effective therapies. In this scenario, blood derivatives (plasma and serum) constitute the more commonly used biofluids due to its ease of collection and high value for diagnostic purposes. Therefore, the potential impact of this virus in the circulating lipidome was addressed combining the analysis of samples from experimentally infected mice and naturally WND patients. Our results unveil dynamic alterations in the lipidome that define specific metabolic fingerprints of different infection stages. Concomitant with neuroinvasion in mice, the lipid landscape was dominated by a metabolic reprograming that resulted in significant elevations of circulating sphingolipids (ceramides, dihydroceramides, and dihydrosphingomyelins), phosphatidylethanolamines and triacylglycerols. Remarkably, patients suffering from WND also displayed an elevation of ceramides, dihydroceramides, lactosylceramides, and monoacylglycerols in their sera. The dysregulation of sphingolipid metabolism by WNV may provide new therapeutic opportunities and supports the potential of certain lipids as novel peripheral biomarkers of WND progression.


Assuntos
Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Camundongos , Vírus do Nilo Ocidental/genética , Esfingolipídeos/metabolismo , Esfingolipídeos/uso terapêutico , Ceramidas/metabolismo , Ceramidas/uso terapêutico , Biomarcadores/metabolismo
13.
Mol Metab ; 74: 101749, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37271337

RESUMO

OBJECTIVE: Maresin 1 (MaR1) is a docosahexaenoic acid-derived proresolving lipid mediator with insulin-sensitizing and anti-steatosis properties. Here, we aim to unravel MaR1 actions on brown adipose tissue (BAT) activation and white adipose tissue (WAT) browning. METHODS: MaR1 actions were tested in cultured murine brown adipocytes and in human mesenchymal stem cells (hMSC)-derived adipocytes. In vivo effects of MaR1 were tested in diet-induced obese (DIO) mice and lean WT and Il6 knockout (Il6-/-) mice. RESULTS: In cultured differentiated murine brown adipocytes, MaR1 reduces the expression of inflammatory genes, while stimulates glucose uptake, fatty acid utilization and oxygen consumption rate, along with the upregulation of mitochondrial mass and genes involved in mitochondrial biogenesis and function and the thermogenic program. In Leucine Rich Repeat Containing G Protein-Coupled Receptor 6 (LGR6)-depleted brown adipocytes using siRNA, the stimulatory effect of MaR1 on thermogenic genes was abrogated. In DIO mice, MaR1 promotes BAT remodeling, characterized by higher expression of genes encoding for master regulators of mitochondrial biogenesis and function and iBAT thermogenic activation, together with increased M2 macrophage markers. In addition, MaR1-treated DIO mice exhibit a better response to cold-induced BAT activation. Moreover, MaR1 induces a beige adipocyte signature in inguinal WAT of DIO mice and in hMSC-derived adipocytes. MaR1 potentiates Il6 expression in brown adipocytes and BAT of cold exposed lean WT mice. Interestingly, the thermogenic properties of MaR1 were abrogated in Il6-/- mice. CONCLUSIONS: These data reveal MaR1 as a novel agent that promotes BAT activation and WAT browning by regulating thermogenic program in adipocytes and M2 polarization of macrophages. Moreover, our data suggest that LGR6 receptor is mediating MaR1 actions on brown adipocytes, and that IL-6 is required for the thermogenic effects of MaR1.


Assuntos
Tecido Adiposo Marrom , Ácidos Docosa-Hexaenoicos , Camundongos , Humanos , Animais , Tecido Adiposo Marrom/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Interleucina-6/metabolismo , Tecido Adiposo Branco/metabolismo , Adipócitos Marrons/metabolismo
14.
Biomater Adv ; 150: 213426, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37104961

RESUMO

Acquired muscle diseases such as cancer cachexia are responsible for the poor prognosis of many patients suffering from cancer. In vitro models are needed to study the underlying mechanisms of those pathologies. Extrusion bioprinting is an emerging tool to emulate the aligned architecture of fibers while implementing additive manufacturing techniques in tissue engineering. However, designing bioinks that reconcile the rheological needs of bioprinting and the biological requirements of muscle tissue is a challenging matter. Here we formulate a biomaterial with dual crosslinking to modulate the physical properties of bioprinted models. We design 3D bioprinted muscle models that resemble the mechanical properties of native tissue and show improved proliferation and high maturation of differentiated myotubes suggesting that the GelMA-AlgMA-Fibrin biomaterial possesses myogenic properties. The electrical stimulation of the 3D model confirmed the contractile capability of the tissue and enhanced the formation of sarcomeres. Regarding the functionality of the models, they served as platforms to recapitulate skeletal muscle diseases such as muscle wasting produced by cancer cachexia. The genetic expression of 3D models demonstrated a better resemblance to the muscular biopsies of cachectic mouse models. Altogether, this biomaterial is aimed to fabricate manipulable skeletal muscle in vitro models in a non-costly, fast and feasible manner.


Assuntos
Caquexia , Neoplasias , Camundongos , Animais , Caquexia/etiologia , Caquexia/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Neoplasias/complicações , Neoplasias/metabolismo , Materiais Biocompatíveis
15.
Metab Eng ; 77: 256-272, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37088334

RESUMO

Obesity and its associated metabolic comorbidities are a rising global health and social issue, with novel therapeutic approaches urgently needed. Adipose tissue plays a key role in the regulation of energy balance and adipose tissue-derived mesenchymal stem cells (AT-MSCs) have gained great interest in cell therapy. Carnitine palmitoyltransferase 1A (CPT1A) is the gatekeeper enzyme for mitochondrial fatty acid oxidation. Here, we aimed to generate adipocytes expressing a constitutively active CPT1A form (CPT1AM) that can improve the obese phenotype in mice after their implantation. AT-MSCs were differentiated into mature adipocytes, subjected to lentivirus-mediated expression of CPT1AM or the GFP control, and subcutaneously implanted into mice fed a high-fat diet (HFD). CPT1AM-implanted mice showed lower body weight, hepatic steatosis and serum insulin and cholesterol levels alongside improved glucose tolerance. HFD-induced increases in adipose tissue hypertrophy, fibrosis, inflammation, endoplasmic reticulum stress and apoptosis were reduced in CPT1AM-implanted mice. In addition, the expression of mitochondrial respiratory chain complexes was enhanced in the adipose tissue of CPT1AM-implanted mice. Our results demonstrate that implantation of CPT1AM-expressing AT-MSC-derived adipocytes into HFD-fed mice improves the obese metabolic phenotype, supporting the future clinical use of this ex vivo gene therapy approach.


Assuntos
Intolerância à Glucose , Animais , Camundongos , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Inflamação/metabolismo , Obesidade/genética , Obesidade/tratamento farmacológico , Obesidade/metabolismo
16.
Biol Sex Differ ; 14(1): 14, 2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966335

RESUMO

BACKGROUND: Fatty acid metabolism in the hypothalamus has an important role in food intake, but its specific role in AgRP neurons is poorly understood. Here, we examined whether carnitinea palmitoyltransferase 1A (CPT1A), a key enzyme in mitochondrial fatty acid oxidation, affects energy balance. METHODS: To obtain Cpt1aKO mice and their control littermates, Cpt1a(flox/flox) mice were crossed with tamoxifen-inducible AgRPCreERT2 mice. Food intake and body weight were analyzed weekly in both males and females. At 12 weeks of age, metabolic flexibility was determined by ghrelin-induced food intake and fasting-refeeding satiety tests. Energy expenditure was analyzed by calorimetric system and thermogenic activity of brown adipose tissue. To study fluid balance the analysis of urine and water intake volumes; osmolality of urine and plasma; as well as serum levels of angiotensin and components of RAAS (renin-angiotensin-aldosterone system) were measured. At the central level, changes in AgRP neurons were determined by: (1) analyzing specific AgRP gene expression in RiboTag-Cpt1aKO mice obtained by crossing Cpt1aKO mice with RiboTag mice; (2) measuring presynaptic terminal formation in the AgRP neurons with the injection of the AAV1-EF1a-DIO-synaptophysin-GFP in the arcuate nucleus of the hypothalamus; (3) analyzing AgRP neuronal viability and spine formations by the injection AAV9-EF1a-DIO-mCherry in the arcuate nucleus of the hypothalamus; (4) analyzing in situ the specific AgRP mitochondria in the ZsGreen-Cpt1aKO obtained by breeding ZsGreen mice with Cpt1aKO mice. Two-way ANOVA analyses were performed to determine the contributions of the effect of lack of CPT1A in AgRP neurons in the sex. RESULTS: Changes in food intake were just seen in male Cpt1aKO mice while only female Cpt1aKO mice increased energy expenditure. The lack of Cpt1a in the AgRP neurons enhanced brown adipose tissue activity, mainly in females, and induced a substantial reduction in fat deposits and body weight. Strikingly, both male and female Cpt1aKO mice showed polydipsia and polyuria, with more reduced serum vasopressin levels in females and without osmolality alterations, indicating a direct involvement of Cpt1a in AgRP neurons in fluid balance. AgRP neurons from Cpt1aKO mice showed a sex-dependent gene expression pattern, reduced mitochondria and decreased presynaptic innervation to the paraventricular nucleus, without neuronal viability alterations. CONCLUSIONS: Our results highlight that fatty acid metabolism and CPT1A in AgRP neurons show marked sex differences and play a relevant role in the neuronal processes necessary for the maintenance of whole-body fluid and energy balance.


Assuntos
Carnitina O-Palmitoiltransferase , Neurônios , Sede , Animais , Feminino , Masculino , Camundongos , Proteína Relacionada com Agouti/genética , Peso Corporal , Ácidos Graxos/metabolismo , Carnitina O-Palmitoiltransferase/genética , Ingestão de Alimentos , Fatores Sexuais
17.
J Hepatol ; 79(1): 25-42, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36822479

RESUMO

BACKGROUND & AIMS: The consumption of sugar and a high-fat diet (HFD) promotes the development of obesity and metabolic dysfunction. Despite their well-known synergy, the mechanisms by which sugar worsens the outcomes associated with a HFD are largely elusive. METHODS: Six-week-old, male, C57Bl/6 J mice were fed either chow or a HFD and were provided with regular, fructose- or glucose-sweetened water. Moreover, cultured AML12 hepatocytes were engineered to overexpress ketohexokinase-C (KHK-C) using a lentivirus vector, while CRISPR-Cas9 was used to knockdown CPT1α. The cell culture experiments were complemented with in vivo studies using mice with hepatic overexpression of KHK-C and in mice with liver-specific CPT1α knockout. We used comprehensive metabolomics, electron microscopy, mitochondrial substrate phenotyping, proteomics and acetylome analysis to investigate underlying mechanisms. RESULTS: Fructose supplementation in mice fed normal chow and fructose or glucose supplementation in mice fed a HFD increase KHK-C, an enzyme that catalyzes the first step of fructolysis. Elevated KHK-C is associated with an increase in lipogenic proteins, such as ACLY, without affecting their mRNA expression. An increase in KHK-C also correlates with acetylation of CPT1α at K508, and lower CPT1α protein in vivo. In vitro, KHK-C overexpression lowers CPT1α and increases triglyceride accumulation. The effects of KHK-C are, in part, replicated by a knockdown of CPT1α. An increase in KHK-C correlates negatively with CPT1α protein levels in mice fed sugar and a HFD, but also in genetically obese db/db and lipodystrophic FIRKO mice. Mechanistically, overexpression of KHK-C in vitro increases global protein acetylation and decreases levels of the major cytoplasmic deacetylase, SIRT2. CONCLUSIONS: KHK-C-induced acetylation is a novel mechanism by which dietary fructose augments lipogenesis and decreases fatty acid oxidation to promote the development of metabolic complications. IMPACT AND IMPLICATIONS: Fructose is a highly lipogenic nutrient whose negative consequences have been largely attributed to increased de novo lipogenesis. Herein, we show that fructose upregulates ketohexokinase, which in turn modifies global protein acetylation, including acetylation of CPT1a, to decrease fatty acid oxidation. Our findings broaden the impact of dietary sugar beyond its lipogenic role and have implications on drug development aimed at reducing the harmful effects attributed to sugar metabolism.


Assuntos
Carnitina O-Palmitoiltransferase , Fígado , Masculino , Camundongos , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina O-Palmitoiltransferase/farmacologia , Acetilação , Fígado/metabolismo , Obesidade/metabolismo , Glucose/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Frutose/metabolismo , Frutoquinases/genética , Frutoquinases/metabolismo
18.
Biomater Sci ; 11(7): 2336-2347, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36804651

RESUMO

Targeting brain lipid metabolism is a promising strategy to regulate the energy balance and fight metabolic diseases such as obesity. The development of stable platforms for selective delivery of drugs, particularly to the hypothalamus, is a challenge but a possible solution for these metabolic diseases. Attenuating fatty acid oxidation in the hypothalamus via CPT1A inhibition leads to satiety, but this target is difficult to reach in vivo with the current drugs. We propose using an advanced crosslinked polymeric micelle-type nanomedicine that can stably load the CPT1A inhibitor C75-CoA for in vivo control of the energy balance. Central administration of the nanomedicine induced a rapid attenuation of food intake and body weight in mice via regulation of appetite-related neuropeptides and neuronal activation of specific hypothalamic regions driving changes in the liver and adipose tissue. This nanomedicine targeting brain lipid metabolism was successful in the modulation of food intake and peripheral metabolism in mice.


Assuntos
Metabolismo dos Lipídeos , Nanomedicina , Camundongos , Animais , Metabolismo Energético , Obesidade/metabolismo , Hipotálamo/metabolismo
19.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36675212

RESUMO

Sensing of long-chain fatty acids (LCFA) in the hypothalamus modulates energy balance, and its disruption leads to obesity. To date, the effects of saturated or unsaturated LCFA on hypothalamic-brown adipose tissue (BAT) axis and the underlying mechanisms have remained largely unclear. Our aim was to characterize the main molecular pathways involved in the hypothalamic regulation of BAT thermogenesis in response to LCFA with different lengths and degrees of saturation. One-week administration of high-fat diet enriched in monounsaturated FA led to higher BAT thermogenesis compared to a saturated FA-enriched diet. Intracerebroventricular infusion of oleic and linoleic acids upregulated thermogenesis markers and temperature in brown fat of mice, and triggered neuronal activation of paraventricular (PaV), ventromedial (VMH) and arcuate (ARC) hypothalamic nuclei, which was not found with saturated FAs. The neuron-specific protein carnitine palmitoyltransferase 1-C (CPT1C) was a crucial effector of oleic acid since the FA action was blunted in CPT1C-KO mice. Moreover, changes in the AMPK/ACC/malonyl-CoA pathway and fatty acid synthase expression were evoked by oleic acid. Altogether, central infusion of unsaturated but not saturated LCFA increases BAT thermogenesis through CPT1C-mediated sensing of FA metabolism shift, which in turn drive melanocortin system activation. These findings add new insight into neuronal circuitries activated by LCFA to drive thermogenesis.


Assuntos
Tecido Adiposo Marrom , Hipotálamo , Termogênese , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Ácidos Graxos/metabolismo , Hipotálamo/metabolismo , Ácidos Oleicos/metabolismo , Termogênese/genética , Termogênese/fisiologia
20.
Cell Death Dis ; 14(1): 57, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36693836

RESUMO

There is an urgent need to identify reliable genetic biomarkers for accurate diagnosis, prognosis, and treatment of different tumor types. Described as a prognostic marker for many tumors is the neuronal protein carnitine palmitoyltransferase 1 C (CPT1C). Several studies report that CPT1C is involved in cancer cell adaptation to nutrient depletion and hypoxia. However, the molecular role played by CPT1C in cancer cells is controversial. Most published studies assume that, like canonical CPT1 isoforms, CPT1C is a mediator of fatty acid transport to mitochondria for beta-oxidation, despite the fact that CPT1C has inefficient catalytic activity and is located in the endoplasmic reticulum. In this review, we collate existing evidence on CPT1C in neurons, showing that CPT1C is a sensor of nutrients that interacts with and regulates other proteins involved in lipid metabolism and transport, lysosome motility, and the secretory pathway. We argue, therefore, that CPT1C expression in cancer cells is not a direct regulator of fat burn, but rather is a regulator of lipid metabolic reprograming and cell adaptation to environmental stressors. We also review the clinical relevance of CPT1C as a prognostic indicator and its contribution to tumor growth, cancer invasiveness, and cell senescence. This new and integrated vision of CPT1C function can help better understand the metabolic plasticity of cancer cells and improve the design of therapeutic strategies.


Assuntos
Carnitina O-Palmitoiltransferase , Neoplasias , Humanos , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Hipóxia/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Neurônios/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...