Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Nat Protoc ; 19(6): 1710-1749, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38509352

RESUMO

Pigs share anatomical and physiological traits with humans and can serve as a large-animal model for translational medicine. Bona fide porcine pluripotent stem cells (PSCs) could facilitate testing cell and drug therapies. Agriculture and biotechnology may benefit from the ability to produce immune cells for studying animal infectious diseases and to readily edit the porcine genome in stem cells. Isolating porcine PSCs from preimplantation embryos has been intensively attempted over the past decades. We previously reported the derivation of expanded potential stem cells (EPSCs) from preimplantation embryos and by reprogramming somatic cells of multiple mammalian species, including pigs. Porcine EPSCs (pEPSCs) self-renew indefinitely, differentiate into embryonic and extra-embryonic lineages, and permit precision genome editing. Here we present a highly reproducible experimental procedure and data of an optimized and robust porcine EPSC culture system and its use in deriving new pEPSC lines from preimplantation embryos and reprogrammed somatic cells. No particular expertise is required for the protocols, which take ~4-6 weeks to complete. Importantly, we successfully established pEPSC lines from both in vitro fertilized and somatic cell nuclear transfer-derived embryos. These new pEPSC lines proliferated robustly over long-term passaging and were amenable to both simple indels and precision genome editing, with up to 100% targeting efficiency. The pEPSCs differentiated into embryonic cell lineages in vitro and teratomas in vivo, and into porcine trophoblast stem cells in human trophoblast stem cell medium. We show here that pEPSCs have unique epigenetic features, particularly H3K27me3 levels substantially lower than fibroblasts.


Assuntos
Blastocisto , Reprogramação Celular , Animais , Blastocisto/citologia , Suínos , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Células-Tronco Pluripotentes/citologia , Feminino
2.
PLoS One ; 17(12): e0279123, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36584049

RESUMO

Due to its close resemblance, the domesticated pig has proven to be a diverse animal model for biomedical research and genome editing tools have contributed to developing porcine models for several human diseases. By employing the CRISPR-Cas9 system, porcine embryos or somatic cells can be genetically modified to generate the desired genotype. However, somatic cell nuclear transfer (SCNT) of modified somatic cells and embryo manipulation are challenging, especially if the desired genotype is detrimental to the embryo. Direct in vivo edits may facilitate the production of genetically engineered pigs by integrating Cas9 into the porcine genome. Cas9 expressing cells were generated by either random integration or transposon-based integration of Cas9 and used as donor cells in SCNT. In total, 15 animals were generated that carried a transposon-based Cas9 integration and two pigs a randomly integrated Cas9. Cas9 expression was confirmed in muscle, tonsil, spleen, kidney, lymph nodes, oral mucosa, and liver in two boars. Overall, Cas9 expression was higher for transposon-based integration, except in tonsils and liver. To verify Cas9 activity, fibroblasts were subjected to in vitro genome editing. Isolated fibroblasts were transfected with guide RNAs (gRNA) targeting different genes (GGTA1, B4GALNT2, B2M) relevant to xenotransplantation. Next generation sequencing revealed that the editing efficiencies varied (2-60%) between the different target genes. These results show that the integrated Cas9 remained functional, and that Cas9 expressing pigs may be used to induce desired genomic modifications to model human diseases or further evaluate in vivo gene therapy approaches.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Suínos , Masculino , Humanos , Edição de Genes/métodos , Animais Geneticamente Modificados , Sistemas CRISPR-Cas/genética , Engenharia Genética/métodos , Genômica
3.
PLoS One ; 16(9): e0256701, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34473747

RESUMO

The developmental competence of male and female gametes is frequently reduced under in vitro conditions, mainly due to oxidative stress during handling. The amino-acid derived hormone melatonin has emerged as a potent non-enzymatic antioxidant in many biological systems. The goal of the present study was to evaluate the effects of melatonin on post-thaw sperm quality, fertilizing ability, and embryo development and competence in vitro after in vitro fertilization. Frozen-thawed bovine spermatozoa were incubated either in the presence of 10-11 M melatonin (MT), or its solvent (ethanol; Sham-Control), or plain Tyrode's Albumin Lactate Pyruvate medium (TALP, Control). Computer-Assisted Sperm Analysis (CASA) and flow cytometry data after 30 min, 120 min, and 180 min incubation did not reveal any significant effects of melatonin on average motility parameters, sperm subpopulation structure as determined by hierarchical cluster, or on the percentage of viable, acrosome intact sperm, or viable sperm with active mitochondria. Nevertheless, in vitro matured cumulus-oocyte-complexes fertilized with spermatozoa which had been preincubated with 10-11 M melatonin (MT-Sperm) showed higher (P < 0.01) rates of monospermic fertilization, reduced (P < 0.05) polyspermy and enhanced (P < 0.05) embryo development compared to the Control group. Moreover, the relative abundance of MAPK13 in the in vitro-derived blastocysts was greater (P < 0.05) than observed in the Control group. In conclusion, adding melatonin to the sperm-preparation protocol for bovine IVF improved proper fertilization and enhanced embryonic development and competence in vitro.


Assuntos
Criopreservação/métodos , Desenvolvimento Embrionário/efeitos dos fármacos , Técnicas de Maturação in Vitro de Oócitos , Melatonina/farmacologia , Oócitos/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Blastocisto/citologia , Blastocisto/efeitos dos fármacos , Blastocisto/metabolismo , Bovinos , Meios de Cultura/química , Meios de Cultura/farmacologia , Feminino , Fertilização in vitro/métodos , Expressão Gênica , Masculino , Proteína Quinase 13 Ativada por Mitógeno/genética , Proteína Quinase 13 Ativada por Mitógeno/metabolismo , Oócitos/citologia , Oócitos/metabolismo , Espermatozoides/citologia , Espermatozoides/metabolismo
4.
Virus Res ; 294: 198295, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33422555

RESUMO

Expanded potential stem cells (EPSCs) have been recently derived from porcine preimplantation embryos (Gao et al., 2019). These cells were shown to express key pluripotency genes, to be genetically stable and differentiate to derivatives of the three germ layers and additionally to trophoblast. Their molecular features and expanded potency to contribute to all embryonic and extra-embryonic cell lineages are generally not seen in the embryo-derived or induced pluripotent stem cells (iPSCs). Therefore porcine EPSCs represent a unique state of cellular potency. In the past it had been shown that human and murine embryonic stem cells (ESCs) show an increased expression of murine and human endogenous retroviruses, respectively, and retroviral expression patterns were used as markers of ESC pluripotency. An increased expression of porcine endogenous retroviruses (PERVs) was also detected in porcine iPSCs. Here we investigated 24 passages of five different clones of porcine EPSCs derived from German landrace pigs and show that they harbour PERV-A, PERV-B and PERV-C, but their expression was very low and did not change during cultivation. No recombinant PERV-A/Cs were found in these cells. The low expression despite the presence of spliced mRNA, and negative infection assay and electron microscopy results indicate that no PERV particles were released. Therefore, the absence of PERV expression seems to be a unique feature of porcine EPSCs. Most importantly, the copy number of PERV proviruses was much lower in EPSCs than in young and older pigs (29.1 copies compared with 35.8), indicating an increase in copy number during life time.


Assuntos
Retrovirus Endógenos , Doenças dos Suínos , Animais , Retrovirus Endógenos/genética , Camundongos , Provírus/genética , RNA Mensageiro , Células-Tronco , Suínos
5.
Cell Reprogram ; 22(3): 118-133, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32429746

RESUMO

Chimeric pigs harboring organs derived from human stem cells are promising for patient-specific regenerative therapies. Induced pluripotent stem cells (iPSCs) can contribute to all cell types of the fetus, including germline after injection into embryos. However, ethical concerns prohibit testing human iPSCs in chimera assays. Here, we evaluated porcine embryos as hosts for an interspecies chimera assay using iPSCs from either cynomolgus monkeys (cyiPSCs) or mouse (miPSCs). To establish an in vitro culture system compatible for cyiPSCs and porcine embryos, we determined blastocyst development in eight different stem cell media. The highest developmental rates of blastocysts were achieved in Knockout Dulbecco's modified Eagle's medium with 20% knockout serum replacement. We found that cyiPSCs injected into porcine embryos survived in vitro and were mostly located in the trophectoderm (TE). Instead, when miPSCs were injected into porcine embryos, the cells rapidly proliferated. The behavior of chimeras developed in vitro was recapitulated in vivo; cyiPSCs were observed in the TE, but not in the porcine epiblast. However, when miPSCs were injected into in vivo derived porcine embryos, mouse cells were found in both, the epiblast and TE. These results demonstrate that porcine embryos could be useful for evaluating the interspecies chimera-forming ability of iPSCs from different species.


Assuntos
Quimera/embriologia , Técnicas de Cultura Embrionária/veterinária , Desenvolvimento Embrionário/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Blastocisto , Meios de Cultura , Embrião de Mamíferos , Macaca fascicularis , Camundongos , Especificidade da Espécie , Suínos
6.
Nat Cell Biol ; 21(6): 687-699, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31160711

RESUMO

We recently derived mouse expanded potential stem cells (EPSCs) from individual blastomeres by inhibiting the critical molecular pathways that predispose their differentiation. EPSCs had enriched molecular signatures of blastomeres and possessed developmental potency for all embryonic and extra-embryonic cell lineages. Here, we report the derivation of porcine EPSCs, which express key pluripotency genes, are genetically stable, permit genome editing, differentiate to derivatives of the three germ layers in chimeras and produce primordial germ cell-like cells in vitro. Under similar conditions, human embryonic stem cells and induced pluripotent stem cells can be converted, or somatic cells directly reprogrammed, to EPSCs that display the molecular and functional attributes reminiscent of porcine EPSCs. Importantly, trophoblast stem-cell-like cells can be generated from both human and porcine EPSCs. Our pathway-inhibition paradigm thus opens an avenue for generating mammalian pluripotent stem cells, and EPSCs present a unique cellular platform for translational research in biotechnology and regenerative medicine.


Assuntos
Diferenciação Celular/genética , Reprogramação Celular/genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes/citologia , Animais , Blastômeros/citologia , Blastômeros/metabolismo , Linhagem da Célula/genética , Células-Tronco Embrionárias/citologia , Camadas Germinativas/crescimento & desenvolvimento , Camadas Germinativas/metabolismo , Humanos , Camundongos , Medicina Regenerativa , Transdução de Sinais/genética , Suínos , Trofoblastos/citologia , Trofoblastos/metabolismo
7.
Stem Cell Res ; 25: 50-60, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29080444

RESUMO

Foxg1 is a transcription factor critical for the development of the mammalian telencephalon. Foxg1 controls the proliferation of dorsal telencephalon progenitors and the specification of the ventral telencephalon. Homozygous knockout of Foxg1 in mice leads to severe microcephaly, attributed to premature differentiation of telencephalic progenitors, mainly of cortical progenitors. Here, we analyzed the influence of a Foxg1 knockout on differentiation of murine pluripotent stem cells (mPSCs) in an in vitro model of neuronal development. Murine PSCs were prone to neuronal differentiation in embryoid body like culture with minimal medium conditions, based on the intrinsic default of PSCs to develop into cortical progenitors. Differences between Foxg1 wildtype (Foxg1WT) and knockout (Foxg1KO) mPSCs were analyzed. Several mPSC lines with homozygous mutations in Foxg1 were produced using the CRISPR/Cas9 system leading to loss of functional domains. Analysis of mRNA expression using quantitative Real-Time (q) PCR revealed that Foxg1KO mPSCs expressed significantly less mRNA of Foxg1, Emx1, and VGlut1 compared to Foxg1WT controls, indicating reduced differentiation towards dorsal telencephalic progenitors. However, the size of the derived EB-like structures did not differ between Foxg1WT and Foxg1KO mPSCs. These results show that loss of dorsal telencephalic progenitors can be detected using a simple and rapid differentiation protocol. This study is a first hint that this differentiation method can be used to analyze even extreme phenotypes that are lethal in vivo.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Pluripotentes/citologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Corpos Embrioides/citologia , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Neurônios/metabolismo , Células-Tronco Pluripotentes/metabolismo
8.
Xenotransplantation ; 23(5): 338-46, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27610605

RESUMO

BACKGROUND: Xenotransplantation is considered to be a promising solution to the growing demand for suitable donor organs for transplantation. Despite tremendous progress in the generation of pigs with multiple genetic modifications thought to be necessary to overcoming the severe rejection responses after pig-to-non-human primate xenotransplantation, the production of knockout pigs by somatic cell nuclear transfer (SCNT) is still an inefficient process. Producing genetically modified pigs by intracytoplasmic microinjection of porcine zygotes is an alluring alternative. The porcine GGTA1 gene encodes for the α1,3-galactosyltransferase that synthesizes the Gal epitopes on porcine cells which constitute the major antigen in a xenotransplantation setting. GGTA1-KO pigs have successfully been produced by transfecting somatic cells with zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), or CRISPR/Cas targeting GGTA1, followed by SCNT. METHODS: Here, we microinjected a CRISPR/Cas9 vector coding for a single-guide RNA (sgRNA) targeting exon 8 of the GGTA1 gene into the cytoplasm of 97 in vivo-derived porcine zygotes and transferred 86 of the microinjected embryos into three hormonally synchronized recipients. Fetuses and piglets were analyzed by flow cytometry for remaining Gal epitopes. DNA was sequenced to detect mutations at the GGTA1 locus. RESULTS: Two of the recipients remained pregnant as determined by ultrasound scanning on day 25 of gestation. One pregnancy was terminated on day 26, and six healthy fetuses were recovered. The second pregnancy was allowed to go to term and resulted in the birth of six healthy piglets. Flow cytometry analysis revealed the absence of Gal epitopes in four of six fetuses (66%), indicating a biallelic KO of GGTA1. Additionally, three of the six live-born piglets (50%) did not express Gal epitopes on their cell surface. Two fetuses and two piglets showed a mosaicism with a mixed population of Gal-free and Gal-expressing cells. Only a single piglet did not have any genomic modifications. Genomic sequencing revealed indel formation at the GGTA1 locus ranging from +17 bp to -20 bp. CONCLUSIONS: These results demonstrate the efficacy of CRISPR/Cas to generate genetic modifications in pigs by simplified technology, such as intracytoplasmic microinjection into zygotes, which would significantly facilitate the production of genetically modified pigs suitable for xenotransplantation. Importantly, this simplified injection protocol avoids the penetration of the vulnerable pronuclear membrane, and is thus compatible with higher survival rates of microinjected embryos, which in turn facilitates production of genetically modified piglets.


Assuntos
Citoplasma , Galactosiltransferases/metabolismo , Zigoto , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas/genética , Citoplasma/genética , Galactosiltransferases/deficiência , Técnicas de Inativação de Genes/métodos , Microinjeções/métodos , Técnicas de Transferência Nuclear , Suínos
9.
Mol Reprod Dev ; 83(9): 802-814, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27567027

RESUMO

Epigenetic changes are critical for the acquisition of developmental potential by oocytes and embryos, yet these changes may be sensitive to maternal ageing. Here, we investigated the impact of maternal ageing on DNA methylation and mRNA expression in a panel of eight genes that are critically involved in oocyte and embryo development. Bovine oocytes were collected from donors of three different age categories-prepubertal (9-12 months old), mature (3-7 years old), and aged (8-11 years old)-and were analyzed for gene-specific DNA methylation (bTERF2, bREC8, bBCL-XL, bPISD, bBUB1, bDNMT3Lo, bH19, and bSNRPN) and mRNA expression (bTERF2, bBCL-XL, bPISD, and bBUB1). A total of 1,044 alleles with 88,740 CpGs were amplified and sequenced from 362 bovine oocytes. Most of the detected molecules were either fully methylated or completely unmethylated. Only 9 out of 1,044 alleles (<1%) were abnormally methylated (>50% of CpGs with an aberrant methylation status), and seven of the nine abnormally methylated alleles were within only two candidate genes (bDNMT3Lo and bH19). No significant differences were detected with regard to mRNA expression between oocytes from the three groups of donors. These results suggest that genes predominantly important for early embryo development (bH19 and bDNMT3Lo) are less resistant to abnormal methylation than genes critically involved in oocyte development (bTERF2, bBCL-XL, bPISD, bBUB1, and bSNRPN). Establishment of DNA methylation in bovine oocytes seems to be largely resistant to changes caused by maternal ageing, irrespective of whether the genes are critical to achieve developmental competence in oocytes or early embryos. Mol. Reprod. Dev. 83: 802-814, 2016 © 2016 Wiley Periodicals, Inc.


Assuntos
Envelhecimento/fisiologia , Metilação de DNA/fisiologia , Regulação da Expressão Gênica/fisiologia , Oócitos/metabolismo , RNA Mensageiro/biossíntese , Animais , Bovinos , Feminino , Oócitos/citologia
10.
Theriogenology ; 86(5): 1222-30, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27180328

RESUMO

Cryopreservation of in vitro produced bovine embryos is associated with significantly reduced survival rates, mainly due to insufficient quality of the embryos. Caffeine supplementation during IVM has been used to delay meiotic resumption and concomitantly also increased embryo quality. Here, we investigated the influence of pre-IVM with caffeine on oocyte maturation, intraoocyte cAMP concentration, developmental competence after IVF, and blastocyst cryotolerance. Oocytes were obtained by slicing of ovaries and were submitted to either 2 hours culture before IVM with or without caffeine (0, 1, 5, 10, 20, 30 mM), or standard IVM (no pre-IVM). Oocytes were in vitro matured and fertilized and zygotes were cultured under standard in vitro conditions until Day 8. Expanded blastocysts derived from either standard control or the 10-mM caffeine treatments were submitted to vitrification. Caffeine delayed meiotic resumption after 9-hour IVM in a concentration-dependent manner. The cAMP levels were similar before and after IVM. Matured oocytes, cleavage, and blastocyst rates were reduced in the 30-mM caffeine concentration and were similar among the other treatment groups. Number and proportion of inner cell mass and trophectoderm cells in blastocysts did not differ among treatments. Forty-eight hours after thawing, hatching rates were higher in the 10-mM caffeine group (73.8%) compared with the standard control (59.7%). Reexpansion rates and total number of cells after 48 hours were similar in both treatments. The ratio of live/total cells was higher in the caffeine treatment. These results suggest that caffeine supplementation before IVM delayed meiotic resumption and improved blastocyst quality shown in higher cryotolerance.


Assuntos
Cafeína/farmacologia , Bovinos , Criopreservação/veterinária , Técnicas de Cultura Embrionária/veterinária , Técnicas de Maturação in Vitro de Oócitos/veterinária , Oócitos/efeitos dos fármacos , Animais , Blastocisto/citologia , Blastocisto/efeitos dos fármacos , Feminino , Inibidores de Fosfodiesterase/farmacologia , Vitrificação
11.
PLoS One ; 11(2): e0150264, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26926596

RESUMO

High cAMP levels during in vitro maturation (IVM) have been related to improved blastocyst yields. Here, we employed the cAMP/cGMP modulators, forskolin, IBMX, and cilostamide, during IVM to unravel the role of high cAMP in early embryonic development produced from prepubertal and adult bovine oocytes. Oocytes were collected via transvaginal aspiration and randomly assigned to three experimental groups: TCM24 (24 h IVM/control), cAMP30 (2 h pre-IVM (forskolin-IBMX), 30 h IVM-cilostamide), and DMSO30 (Dimethyl Sulfoxide/vehicle control). After IVM, oocytes were fertilized in vitro and zygotes were cultured in vitro to blastocysts. Meiotic progression, cAMP levels, mRNA abundance of selected genes and DNA methylation were evaluated in oocytes. Blastocysts were used for gene expression or DNA methylation analyses. Blastocysts from the cAMP30 groups were transferred to recipients. The cAMP elevation delayed meiotic progression, but developmental rates were not increased. In immature oocytes, mRNA abundance of PRKACA was higher for cAMP30 protocol and no differences were found for PDE3A, SMAD2, ZAR1, PRDX1 and SLC2A8. EGR1 gene was up-regulated in prepubertal cAMP30 immature oocytes and down-regulated in blastocysts from all in vitro treatments. A similar gene expression profile was observed for DNMT3b, BCL2L1, PRDX1 and SLC2A8 in blastocysts. Satellite DNA methylation profiles were different between prepubertal and adult oocytes and blastocysts derived from the TCM24 and DMSO30 groups. Blastocysts obtained from prepubertal and adult oocytes in the cAMP30 treatment displayed normal methylation profiles and produced offspring. These data indicate that cAMP regulates IVM in prepubertal and adult oocytes in a similar manner, with impact on the establishment of epigenetic marks and acquisition of full developmental competency.


Assuntos
AMP Cíclico/metabolismo , Desenvolvimento Embrionário , Oócitos/citologia , Puberdade , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Bovinos , Contagem de Células , Ilhas de CpG/genética , Metilação de DNA , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Meiose , Oócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
Transplant Direct ; 1(6): e23, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27500225

RESUMO

UNLABELLED: Multiple modifications of the porcine genome are required to prevent rejection after pig-to-primate xenotransplantation. Here, we produced pigs with a knockout of the α1,3-galactosyltransferase gene (GGTA1-KO) combined with transgenic expression of the human anti-apoptotic/anti-inflammatory molecules heme oxygenase-1 and A20, and investigated their xenoprotective properties. METHODS: The GGTA1-KO/human heme oxygenase-1 (hHO-1)/human A20 (hA20) transgenic pigs were produced in a stepwise approach using zinc finger nuclease vectors targeting the GGTA1 gene and a Sleeping Beauty vector coding for hA20. Two piglets were analyzed by quantitative reverse-transcription polymerase chain reaction, flow cytometry, and sequencing. The biological function of the genetic modifications was tested in a (51)Chromium release assay and by ex vivo kidney perfusions with human blood. RESULTS: Disruption of the GGTA1 gene by deletion of few basepairs was demonstrated in GGTA1-KO/hHO-1/hA20 transgenic pigs. The hHO-1 and hA20 mRNA expression was confirmed by quantitative reverse-transcription polymerase chain reaction. Ex vivo perfusion of 2 transgenic kidneys was feasible for the maximum experimental time of 240 minutes without symptoms of rejection. CONCLUSIONS: Results indicate that GGTA1-KO/hHO-1/hA20 transgenic pigs are a promising model to alleviate rejection and ischemia-reperfusion damage in porcine xenografts and could serve as a background for further genetic modifications toward the production of a donor pig that is clinically relevant for xenotransplantation.

13.
Zygote ; 23(3): 367-77, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24423448

RESUMO

Cyclic adenosine monophosphate (cAMP) modulators have been used to avoid spontaneous oocyte maturation and concomitantly improve oocyte developmental competence. The current work evaluated the effects of the addition of cAMP modulators forskolin, 3-isobutyl-1-methylxanthine (IBMX) and cilostamide during in vitro maturation on the quality and yields of blastocysts. The following experimental groups were evaluated: (i) slicing or (ii) aspiration and maturation in tissue culture medium (TCM)199 for 24 h (TCM24slicing and TCM24aspiration, respectively), (iii) aspiration and maturation in the presence of cAMP modulators for 30 h (cAMP30aspiration) and in vivo-produced blastocysts. In vitro-matured oocytes were fertilized and presumptive zygotes were cultured in vitro to assess embryo development. Cleavage, blastocyst formation, blastocyst cell number, mRNA abundance of selected genes and global methylation profiles were evaluated. Blastocyst rate/zygotes for the TCM24aspiration protocol was improved (32.2 ± 2.1%) compared with TCM24slicing and cAMP30aspiration (23.4 ± 1.2% and 23.3 ± 2.0%, respectively, P 0.05), while those from the other groups were significantly elevated. It is concluded that retrieval, collection systems and addition of cAMP modulators can affect oocyte developmental competence, which is reflected not only in blastocyst rates but also in global DNA methylation and gene expression patterns.


Assuntos
Blastocisto/fisiologia , Meios de Cultura/farmacologia , Técnicas de Maturação in Vitro de Oócitos/métodos , Recuperação de Oócitos/métodos , 1-Metil-3-Isobutilxantina/farmacologia , Animais , Bovinos , Colforsina/farmacologia , Meios de Cultura/química , Metilação de DNA , Feminino , Fertilização in vitro , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Quinolonas/farmacologia
14.
PLoS One ; 9(5): e96673, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24811124

RESUMO

Human cells migrate between mother and fetus during pregnancy and persist in the respective host for long-term after birth. Fetal microchimerism occurs also in twins sharing a common placenta or chorion. Whether microchimerism occurs in multiparous mammals such as the domestic pig, where fetuses have separate placentas and chorions, is not well understood. Here, we assessed cell chimerism in litters of wild-type sows inseminated with semen of transposon transgenic boars. Segregation of three independent monomeric transposons ensured an excess of transgenic over non-transgenic offspring in every litter. Transgenic siblings (n = 35) showed robust ubiquitous expression of the reporter transposon encoding a fluorescent protein, and provided an unique resource to assess a potential cell trafficking to non-transgenic littermates (n = 7) or mothers (n = 4). Sensitive flow cytometry, fluorescence microscopy, and real-time PCR provided no evidence for microchimerism in porcine littermates, or piglets and their mothers in both blood and solid organs. These data indicate that the epitheliochorial structure of the porcine placenta effectively prevents cellular exchange during gestation.


Assuntos
Animais Geneticamente Modificados/embriologia , Animais Geneticamente Modificados/genética , Movimento Celular , Quimera , Elementos de DNA Transponíveis/genética , Feto/citologia , Animais , Feminino , Feto/metabolismo , Genes Reporter/genética , Masculino , Mães , Placenta/fisiologia , Gravidez , Sêmen/metabolismo , Suínos
15.
Epigenetics ; 8(3): 281-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23406883

RESUMO

Normal development depends on the precise sequence of changes in the configuration of chromatin; these are primarily related to specific biochemical modifications such as acetylation or methylation of histones and DNA methylation. While the role of DNA methylation during preimplantation development has been studied extensively, little is known about histone modifications related to early embryonic development. Here, we investigated gene-specific histone modifications in in vitro produced bovine blastocysts. Selected genes thought to be critical for bovine preimplantation development were examined and included POU5F1 (OCT4), NANOG, INFT, GAPDH, SLC2A3 and IGF1. We used chromatin immunoprecipitation from pools of bovine blastocysts to unravel several modifications of histone H3 in relation to mRNA expression profiles. We focused on the two cell compartments of the blastocyst, the inner cell mass (ICM) and the trophectoderm (TE). We show that gene expression patterns in the ICM and TE of the bovine blastocyst are consistent with histone modification patterns on the promoter of the corresponding genes. The data show a complex epigenetic pattern of promoter occupancy by transcriptionally permissive and repressive H3 modifications. These results pave the way to in-depth epigenetic studies of preimplantation embryos that are crucial to gain a better understanding of the epigenetic changes frequently observed after use of assisted reproductive technologies.


Assuntos
Massa Celular Interna do Blastocisto/metabolismo , Blastocisto/metabolismo , Bovinos/metabolismo , Histonas/metabolismo , RNA Mensageiro/metabolismo , Animais , Bovinos/embriologia , Bovinos/genética , Epigênese Genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Transcrição Gênica , Trofoblastos/metabolismo
16.
Stem Cells Dev ; 22(1): 124-35, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22989381

RESUMO

The domestic pig is an important large animal model for preclinical testing of novel cell therapies. Recently, we produced pluripotency reporter pigs in which the Oct4 promoter drives expression of the enhanced green fluorescent protein (EGFP). Here, we reprogrammed Oct4-EGFP fibroblasts employing the nonviral Sleeping Beauty transposon system to deliver the reprogramming factors Oct4, Sox2, Klf4, and cMyc. Successful reprogramming to a pluripotent state was indicated by changes in cell morphology and reactivation of the Oct4-EGFP reporter. The transposon-reprogrammed induced pluripotent stem (iPS) cells showed long-term proliferation in vitro over >40 passages, expressed transcription factors typical of embryonic stem cells, including OCT4, NANOG, SOX2, REX1, ESRRB, DPPA5, and UTF1 and surface markers of pluripotency, including SSEA-1 and TRA-1-60. In vitro differentiation resulted in derivatives of the 3 germ layers. Upon injection of putative iPS cells under the skin of immunodeficient mice, we observed teratomas in 3 of 6 cases. These results form the basis for in-depth studies toward the derivation of porcine iPS cells, which hold great promise for preclinical testing of novel cell therapies in the pig model.


Assuntos
Elementos de DNA Transponíveis/genética , Células-Tronco Pluripotentes Induzidas/fisiologia , Animais , Antígenos de Diferenciação/metabolismo , Transformação Celular Neoplásica , Células Cultivadas , Técnicas de Cocultura , Fibroblastos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos Nus , Microscopia de Fluorescência , Neurogênese , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição SOXB1/metabolismo , Sus scrofa , Teratoma/patologia , Transcriptoma , Transgenes
17.
Biol Reprod ; 87(4): 95, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22855562

RESUMO

Telomeres play an important role in aging, and are critical for the regenerative capacity of mammalian cells. The holoenzyme telomerase rebuilds telomeres and is composed of two components, the catalytic protein telomerase reverse transcriptase (TERT) and the telomerase RNA (TERC). TERC is ubiquitously expressed in somatic cells and is thought to have no regulatory effects on telomerase activity. Transgenic expression of human TERT (hTERT) in bovine somatic and embryonic cells extends telomere length and enhances telomerase activity. To obtain further insight into the regulatory capacity of the two telomerase components, we have studied the ability of hTERC and hTERT to increase telomerase activity and telomere length in bovine embryos. Expression plasmids for the human RNA component (hTERC) and/or the catalytic subunit of human telomerase (hTERT), respectively, were injected into the cytoplasm of in vitro-produced bovine zygotes. Ectopic expression of hTERC increased telomerase activity and telomere length in bovine blastocysts. Coexpression of hTERT and hTERC did not result in further telomere elongation when compared to the hTERC group. These data indicate that TERC is one of the limiting factors of telomerase activity in bovine blastocysts, and further establish bovine preimplantation embryos as a useful model to modulate telomere length with impact for basic embryology and derivation of pluripotent cells.


Assuntos
Blastocisto/metabolismo , Bovinos/embriologia , RNA/genética , Telomerase/metabolismo , Telômero/metabolismo , Animais , Animais Geneticamente Modificados , Bovinos/genética , Bovinos/metabolismo , Células Cultivadas , Embrião de Mamíferos , Ativação Enzimática/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos , RNA/metabolismo , Telomerase/genética , Telômero/genética , Transfecção , Regulação para Cima/genética , Regulação para Cima/fisiologia
18.
Reproduction ; 144(3): 319-30, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22733804

RESUMO

The developmental capacity of oocytes from prepubertal cattle is reduced compared with their adult counterparts, and epigenetic mechanisms are thought to be involved herein. Here, we analyzed DNA methylation in three developmentally important, nonimprinted genes (SLC2A1, PRDX1, ZAR1) and two satellite sequences, i.e. 'bovine testis satellite I' (BTS) and 'Bos taurus alpha satellite I' (BTαS). In parallel, mRNA expression of the genes was determined by quantitative real-time PCR. Oocytes were retrieved from prepubertal calves and adult cows twice per week over a 3-week period by ultrasound-guided follicular aspiration after treatment with FSH and/or IGF1. Both immature and in vitro matured prepubertal and adult oocytes showed a distinct hypomethylation profile of the three genes without differences between the two types of donors. The methylation status of the BTS sequence changed according to the age and treatment while the methylation status of BTαS sequence remained largely unchanged across the different age and treatment groups. Relative transcript abundance of the selected genes was significantly different in immature and in vitro matured oocytes; only minor changes related to origin and treatment were observed. In conclusion, methylation levels of the investigated satellite sequences were high (>50%) in all groups and showed significant variation depending on the age, treatment, or in vitro maturation. To what extent this is involved in the acquisition of developmental competence of bovine oocytes needs further study.


Assuntos
Bovinos , Metilação de DNA/genética , Oócitos/metabolismo , RNA Mensageiro/análise , Maturidade Sexual , Transcriptoma , Envelhecimento , Animais , DNA Satélite/química , Proteínas do Ovo/genética , Epigênese Genética , Feminino , Hormônio Foliculoestimulante/administração & dosagem , Transportador de Glucose Tipo 1/genética , Fator de Crescimento Insulin-Like I/administração & dosagem , Masculino , Oócitos/química , Oócitos/crescimento & desenvolvimento , Peroxirredoxinas/genética
19.
Xenotransplantation ; 18(6): 355-68, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22168142

RESUMO

BACKGROUND: The major immunological hurdle to successful porcine-to-human xenotransplantation is the acute vascular rejection (AVR), characterized by endothelial cell (EC) activation and perturbation of coagulation. Heme oxygenase-1 (HO-1) and its derivatives have anti-apoptotic, anti-inflammatory effects and protect against reactive oxygen species, rendering HO-1 a promising molecule to control AVR. Here, we report the production and characterization of pigs transgenic for human heme oxygenase-1 (hHO-1) and demonstrate significant protection in porcine kidneys against xenograft rejection in ex vivo perfusion with human blood and transgenic porcine aortic endothelial cells (PAEC) in a TNF-α-mediated apoptosis assay. METHODS: Transgenic and non-transgenic PAEC were tested in a TNF-α-mediated apoptosis assay. Expression of adhesion molecules (ICAM-1, VCAM-1, and E-selectin) was measured by real-time PCR. hHO-1 transgenic porcine kidneys were perfused with pooled and diluted human AB blood in an ex vivo perfusion circuit. MHC class-II up-regulation after induction with IFN-γ was compared between wild-type and hHO-1 transgenic PAEC. RESULTS: Cloned hHO-1 transgenic pigs expressed hHO-1 in heart, kidney, liver, and in cultured ECs and fibroblasts. hHO-1 transgenic PAEC were protected against TNF-α-mediated apoptosis. Real-time PCR revealed reduced expression of adhesion molecules like ICAM-1, VCAM-1, and E-selectin. These effects could be abrogated by the incubation of transgenic PAECs with the specific HO-1 inhibitor zinc protoporphorine IX (Zn(II)PPIX, 20 µm). IFN-γ induced up-regulation of MHC class-II molecules was significantly reduced in PAECs from hHO-1 transgenic pigs. hHO-1 transgenic porcine kidneys could successfully be perfused with diluted human AB-pooled blood for a maximum of 240 min (with and without C1 inh), while in wild-type kidneys, blood flow ceased after ∼60 min. Elevated levels of d-Dimer and TAT were detected, but no significant consumption of fibrinogen and antithrombin was determined. Microthrombi could not be detected histologically. CONCLUSIONS: These results are encouraging and warrant further studies on the biological function of heme oxygenase-I expression in hHO-1 transgenic pigs in the context of xenotransplantation.


Assuntos
Rejeição de Enxerto/prevenção & controle , Heme Oxigenase-1/metabolismo , Rim/imunologia , Transplante Heterólogo/imunologia , Animais , Animais Geneticamente Modificados , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Rejeição de Enxerto/imunologia , Heme Oxigenase-1/genética , Humanos , Rim/irrigação sanguínea , Rim/fisiologia , Perfusão , Suínos , Transgenes
20.
PLoS One ; 6(11): e27563, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22110672

RESUMO

Recently, we generated transposon-transgenic boars (Sus scrofa), which carry three monomeric copies of a fluorophore marker gene. Amazingly, a ubiquitous fluorophore expression in somatic, as well as in germ cells was found. Here, we characterized the prominent fluorophore load in mature spermatozoa of these animals. Sperm samples were analyzed for general fertility parameters, sorted according to X and Y chromosome-bearing sperm fractions, assessed for potential detrimental effects of the reporter, and used for inseminations into estrous sows. Independent of their genotype, all spermatozoa were uniformly fluorescent with a subcellular compartmentalization of the fluorophore protein in postacrosomal sheath, mid piece and tail. Transmission of the fluorophore protein to fertilized oocytes was shown by confocal microscopic analysis of zygotes. The monomeric copies of the transgene segregated during meiosis, rendering a certain fraction of the spermatozoa non-transgenic (about 10% based on analysis of 74 F1 offspring). The genotype-independent transmission of the fluorophore protein by spermatozoa to oocytes represents a non-genetic contribution to the mammalian embryo.


Assuntos
Proteínas de Bactérias/genética , Genótipo , Proteínas Luminescentes/genética , Espermatozoides/metabolismo , Sus scrofa/genética , Transgenes/genética , Animais , Animais Geneticamente Modificados , Elementos de DNA Transponíveis/genética , Embrião de Mamíferos , Fertilidade/genética , Fertilidade/efeitos da radiação , Luz , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espermatozoides/efeitos da radiação , Sus scrofa/embriologia , Sus scrofa/fisiologia , Transcrição Gênica/efeitos da radiação , Cromossomo X/genética , Cromossomo X/efeitos da radiação , Cromossomo Y/genética , Cromossomo Y/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...