Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Scanning ; 36(3): 311-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23817929

RESUMO

In the present work, PANI (polyaniline) emeraldine salt (doped) and base (dedoped) were used as the sensitive layer of a silicon microcantilever, and the mechanical response (deflection) of the bimaterial (coated microcantilever) was investigated under the influence of humidity. PANI in the emeraldine base oxidation state was obtained by interfacial synthesis and was deposited on the microcantilever surface by spin-coating (dedoped). Next, the conducting polymer was doped with 1 M HCl (hydrochloric acid). A four-quadrant AFM head with an integrated laser and a position-sensitive detector (AFM Veeco Dimension V) was used to measure the optical deflection of the coated microcantilever. The deflection of the coated (doped and undoped PANI) and uncoated microcantilever was measured under different humidities (in triplicate) at room pressure and temperature in a closed chamber to evaluate the sensor's sensitivity. The relative humidity (RH) in the chamber was varied from 20% to 70% using dry nitrogen as a carrier gas, which was passed through a bubbler containing water to generate humidity. The results showed that microcantilevers coated with sensitive layers of doped and undoped PANI films were sensitive (12,717 ± 6% and 6,939 ± 8%, respectively) and provided good repeatability (98.6 ± 0.015% and 99 ± 0.01%, respectively) after several cycles of exposure to RH. The microcantilever sensor without a PANI coating (uncoated) was not sensitive to humidity. The strong effect of doping on the sensitivity of the sensor was attributed to an increased adsorption of water molecules dissociated at imine nitrogen centers, which improves the performance of the coated microcantilever sensor. Moreover, microcantilever sensors coated with a sensitive layer provided good results in several cycles of exposure to RH (%).


Assuntos
Compostos de Anilina/química , Materiais Revestidos Biocompatíveis , Umidade , Vapor/análise , Fenômenos Mecânicos , Sensibilidade e Especificidade
2.
J Nanosci Nanotechnol ; 14(9): 6718-22, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25924322

RESUMO

This paper describes a silicon cantilever sensor coated with a conducting polymer layer. The mechanical response (deflection) of the bimaterial (the coated microcantilever) was investigated under the influence of several volatile compounds-methanol, ethanol, acetone, propanol, dichloroethane, toluene and benzene. The variations in the deflection of the coated and uncoated microcantilevers when exposed to volatile organic compounds were evaluated, and the results indicated that the highest sensitivity was obtained with the coated microcantilever and methanol. The uncoated microcantilever was not sensitive to the volatile organic compounds. An increase in the concentration of the volatile organic compound resulted in higher deflections of the microcantilever sensor. The sensor responses were reversible, sensible, rapid and proportional to the volatile concentration.


Assuntos
Compostos de Anilina/química , Técnicas Biossensoriais/instrumentação , Compostos Orgânicos Voláteis/análise , Técnicas Biossensoriais/métodos , Sensibilidade e Especificidade , Compostos Orgânicos Voláteis/química
3.
Micron ; 39(8): 1119-25, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18706822

RESUMO

The study of intermolecular interactions at interfaces is essential for a number of applications, in addition to the understanding of mechanisms involved in sensing and biosensing with liquid samples. There are, however, only a few methods to probe such interfacial phenomena, one of which is the atomic force spectroscopy (AFS) where the force between an atomic force microscope tip and the sample surface is measured. In this study, we used AFS to estimate adhesion forces for a nanostructured film of poly(o-ethoxyaniline) (POEA) doped with various acids, in measurements performed in air. The adhesion force was lower for POEA doped with inorganic acids, such as HCl and H(2)SO(4), than with organic acids, because the counterions were screened by the ethoxy groups. Significantly, the morphology of POEA both in the film and in solution depends on the doping acid. Using small-angle X-ray scattering (SAXS) we observed that POEA dissolved in a mixture of dimethyl acetamide exhibits a more extended coil-like conformation, with smaller radius of gyration, than for POEA in water, as in the latter POEA solubility is lower. In AFS measurements in a liquid cell, the force curves for a POEA layer displayed an attractive region for pH>or=5 due to van der Waals interactions, with no contribution from a double-layer since POEA was dedoped. In contrast, for pH

4.
Microsc Microanal ; 13(4): 304-12, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17637080

RESUMO

Atomic force spectroscopy (AFS) was used to measure interaction forces between the tip and nanostructured layers of poly(o-ethoxyaniline) (POEA) in pure water and CuSO4 solutions. When the tip approach and retraction were carried out at low speeds, POEA chains could be physisorbed onto the Si3N4 tip via nonspecific interactions. We conjecture that while detaching, POEA chains were stretched and the estimated chain lengths were consistent with the expected values from the measured POEA molecular weight. The effects from POEA doping could be investigated directly by performing AFS measurements in a liquid cell, with the POEA film exposed to liquids of distinct pH values. For pH > or = 6.0, the force curves normally displayed an attractive region for POEA, but at lower pH values-where POEA is protonated-the repulsive double-layer forces dominated. Measurements in the liquid cell could be further exploited to investigate how the film morphology and the force curve are affected when impurities are deliberately introduced in the liquid. The shape of the force curves and the film morphology depended on the concentration of heavy metal in the liquid cell. AFS may therefore be used to study the interaction between film and analyte, with important implications for the understanding of mechanisms governing the sensing ability of taste sensors.

5.
J Nanosci Nanotechnol ; 6(8): 2354-61, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17037841

RESUMO

Atomic force microscopy (AFM) was used to study the nanoscale surface chemistry and morphological changes caused by chemical treatment of sisal fibers. Scanning Electron Microscopy (SEM) micrographs indicated that sisal in natura (bundle of fibers) is formed by fibers with diameters of approximately 10 microm. AFM images showed that these fibers consist of microfibrils with diameters varying from 250 to 600 nm, which are made up of nanofibrils of ca. 20 nm in diameter. The adhesion force (pull-off force) between the AFM tip and the fibers surface increased after benzylation, pointing to a decrease in the polar groups on the sisal fiber. The adhesion map measured over a scan range of 3 microm was heterogeneous in samples treated with 40% NaOH and the low adhesion sites disappeared after benzylation. Using an established mathematical model, it was possible to evaluate the increase in adhesion work and consequently in the interaction between the AFM tip and sisal fibers. These results indicated that AFM can detect heterogeneity in the wettability of sisal fibers with nanometer resolution and can be applied in the study of fiber-matrix adhesion in polymer composites.


Assuntos
Agave/química , Microscopia de Força Atômica/métodos , Nanotecnologia/métodos , Adesivos , Biofísica/métodos , Adesão Celular , Microscopia Eletrônica , Microscopia Eletrônica de Varredura , Modelos Estatísticos , Nanoestruturas/química , Propriedades de Superfície , Aderências Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...