Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecosphere ; 12(6)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34249403

RESUMO

Addressing anthropogenic impacts on aquatic ecosystems is a focus of lake management. Controlling phosphorus and nitrogen can mitigate these impacts, but determining management effectiveness requires long-term datasets. Recent analysis of the LAke multi-scaled GeOSpatial and temporal database for the Northeast (LAGOS-NE) United States found stable water quality in the northeastern and midwestern United States; however, sub-regional trends may be obscured. We used the University of Rhode Island's Watershed Watch Volunteer Monitoring Program (URIWW) dataset to determine if there were sub-regional (i.e., 3000 km2) water quality trends. URIWW has collected water quality data on Rhode Island lakes and reservoirs for over 25 yr. The LAGOS-NE and URIWW datasets allowed for comparison of water quality trends at regional and sub-regional scales, respectively. We assessed regional (LAGOS-NE) and sub-regional (URIWW) trends with yearly median anomalies calculated on a per-station basis. Sub-regionally, temperature and chlorophyll a increased from 1993 to 2016. Total nitrogen, total phosphorus, and the nitrogen:phosphorus ratio (N:P) were stable. At the regional scale, the LAGOS-NE dataset showed similar trends to prior studies of the LAGOS-NE with chlorophyll a, total nitrogen, and N:P all stable over time. Total phosphorus did show a very slight increase. In short, algal biomass, as measured by chlorophyll a in Rhode Island lakes and reservoirs increased, despite stability in total nitrogen, total phosphorus, and the nitrogen to phosphorus ratio. Additionally, we demonstrated both the value of long-term monitoring programs, like URIWW, for identifying trends in environmental condition, and the utility of site-specific anomalies for analyzing for long-term water quality trends.

2.
Science ; 158(3802): 775-80, 1967 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-17732627

RESUMO

Seismicity, volcanism, and a linear pattern of very large magnetic anomalies that show symmetry about a broad negative anomaly suggest that a type of sea-floor spreading occurs near the Galapagos Islands in the east-equatorial Pacific. This spreading results from the tensile stresses generated by different spreading directions of two adjacent segments of the East Pacific Rise, and it is suggested that the area be called the Galapagos Rift Zone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...