Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 14(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38392992

RESUMO

Hypoglycaemia-associated autonomic failure (HAAF) is characterised by an impairment in adrenal medullary and neurogenic symptom responses following episodes of recurrent hypoglycaemia. Here, we review the status quo of research related to the regulatory mechanisms of the adrenal medulla in its response to single and recurrent hypoglycaemia in both diabetic and non-diabetic subjects with particular focus given to catecholamine synthesis, enzymatic activity, and the impact of adrenal medullary peptides. Short-term post-transcriptional modifications, particularly phosphorylation at specific residues of tyrosine hydroxylase (TH), play a key role in the regulation of catecholamine synthesis. While the effects of recurrent hypoglycaemia on catecholamine synthetic enzymes remain inconsistent, long-term changes in TH protein expression suggest species-specific responses. Adrenomedullary peptides such as neuropeptide Y (NPY), galanin, and proenkephalin exhibit altered gene and protein expression in response to hypoglycaemia, suggesting a potential role in the modulation of catecholamine secretion. Of note is NPY, since its antagonism has been shown to prevent reductions in TH protein expression. This review highlights the need for further investigation into the molecular mechanisms involved in the adrenal medullary response to hypoglycaemia. Despite advancements in our understanding of HAAF in non-diabetic rodents, a reliable diabetic rodent model of HAAF remains a challenge.

2.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37834073

RESUMO

Chronic stress is known to perturb serotonergic regulation in the brain, leading to mood, learning and memory impairments and increasing the risk of developing mood disorders. The influence of the gut microbiota on serotonergic regulation in the brain has received increased attention recently, justifying the investigation of the role of diet on the gut and the brain in mood disorders. Here, using a 4-week chronic unpredictable mild stress (CUMS) model in mice, we aimed to investigate the effects of a high-fat high-glycaemic index (HFD) and high-fibre fruit & vegetable "superfood" (SUP) modifications of a semi-pure AIN93M diet on behaviour, serotonin synthesis and metabolism pathway regulation in the brain and the gut, as well as the gut microbiota and the peripheral adrenal medullary system. CUMS induced anxiety-like behaviour, dysregulated the tryptophan and serotonin metabolic pathways in the hippocampus, prefrontal cortex, and colon, and altered the composition of the gut microbiota. CUMS reduced the catecholamine synthetic capacity of the adrenal glands. Differential effects were found in these parameters in the HFD and SUP diet. Thus, dietary modifications may profoundly affect the multiple dynamic systems involved in mood disorders.


Assuntos
Medula Suprarrenal , Serotonina , Camundongos , Animais , Serotonina/metabolismo , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Dieta , Medula Suprarrenal/metabolismo , Estresse Psicológico/metabolismo , Depressão/metabolismo
3.
Int J Mol Sci ; 24(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37373499

RESUMO

Anxiety and depressive disorders are closely associated; however, the pathophysiology of these disorders remains poorly understood. Further exploration of the mechanisms involved in anxiety and depression such as the stress response may provide new knowledge that will contribute to our understanding of these disorders. Fifty-eight 8-12-week-old C57BL6 mice were separated into experimental groups by sex as follows: male controls (n = 14), male restraint stress (n = 14), female controls (n = 15) and female restraint stress (n = 15). These mice were taken through a 4-week randomised chronic restraint stress protocol, and their behaviour, as well as tryptophan metabolism and synaptic proteins, were measured in the prefrontal cortex and hippocampus. Adrenal catecholamine regulation was also measured. The female mice showed greater anxiety-like behaviour than their male counterparts. Tryptophan metabolism was unaffected by stress, but some basal sex characteristics were noted. Synaptic proteins were reduced in the hippocampus in stressed females but increased in the prefrontal cortex of all female mice. These changes were not found in any males. Finally, the stressed female mice showed increased catecholamine biosynthesis capability, but this effect was not found in males. Future studies in animal models should consider these sex differences when evaluating mechanisms related to chronic stress and depression.


Assuntos
Neuroquímica , Camundongos , Feminino , Animais , Masculino , Triptofano/metabolismo , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/metabolismo , Ansiedade/metabolismo , Hipocampo/metabolismo , Depressão/etiologia , Depressão/metabolismo , Comportamento Animal , Catecolaminas/metabolismo , Estresse Psicológico/metabolismo , Restrição Física
4.
Physiol Behav ; 247: 113721, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35074305

RESUMO

Stress hormones such as cortisol play a critical role in depressive disorders. Therefore, corticosterone has been used to develop a depression model in animals. Our previous studies found that the precursor of brain-derived neurotrophic factor (proBDNF) and its receptors are upregulated in depression in human and animal models. In the present study, we aimed to examine whether proBDNF and mature BDNF (mBDNF) are altered in the corticosterone-induced depression model in mice. Male and female mice were given corticosterone dissolved in 0.3% hydroxypropyl- ß-cyclodextrin (ß-CD) or vehicle (ß-CD) in drinking water for 33 days. We have found that corticosterone induced depressive-like behaviours as reflected by increased immobility time in the tail suspension test and decreased grooming time in the splash test. Corticosterone also induced anxiety-like behaviours as represented by decreased entries into the central zone of the open field test and the open arms of the elevated plus maze test. We found that corticosterone administration resulted in differential changes of proBDNF and mature BDNF in different brain regions and peripheral tissues. ProBDNF was increased in the hippocampus and cerebellum, but no change was found in the prefrontal cortex and hypothalamus. Both proBDNF and mBDNF were significantly increased in the pituitary gland. In contrast, proBDNF was significantly decreased in the adrenal gland.  There were no significant changes in proBDNF or mBDNF in other peripheral tissues, including the liver and sex organs. We conclude that the stress hormone corticosterone causes depressive behaviours but differentially regulates the processing of proBDNF in mice. ProBDNF may participate in the development of depression behaviours in corticosterone treated animals.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Corticosterona , Afeto , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Corticosterona/metabolismo , Corticosterona/farmacologia , Feminino , Hipocampo/metabolismo , Masculino , Camundongos , Córtex Pré-Frontal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...