Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959059

RESUMO

Metal oxides are widely used in heterogeneous catalysis as supports to disperse catalytically active nanoparticles, isolated atomic sites, or even as catalysts themselves. Herein, we present a method to produce optically active metal oxide supports that exhibit size-dependent Mie resonances based on TiO2 nanospheres with tunable size, crystalline phase composition, and optical properties. Mie resonant TiO2 nanospheres were used as supports to disperse Au, Pt, and Pd nanoparticles. We have found up to a 50-fold enhancement of the electric field at the metal oxide/metal interface corresponding to wavelength-dependent multipolar resonances in the TiO2 structure. Using Au/TiO2 as a prototypical photocatalyst, we demonstrate broadband rate enhancements between 400 and 800 nm during CO oxidation, with a noticeable increase below 500 nm. This increased reactivity at higher photon energies is due to improved photon utilization and interband absorption in the gold that results in greater secondary electron generation through electron-electron scattering processes, thus leading to higher rates in conjunction with the Mie scattering TiO2 support. This study not only highlights the potential of Mie resonant TiO2 in broadband photocatalytic enhancements but also for developing various Mie resonant metal oxide supports, such as ZnO or Cu2O, which can improve photocatalytic performance for a number of critical reactions. As the chemical and energy industries move toward conversion technologies driven by renewable energy sources, the strategy of designing optical resonances into oxide supports that are already widely used could enable a straightforward adaptation of photochemical processing based on traditional heterogeneous catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...