Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropathol Appl Neurobiol ; 40(3): 311-26, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23741998

RESUMO

AIMS: Transmissible spongiform encephalopathies, also called prion diseases, are characterized by the cerebral accumulation of misfolded prion protein (PrP(SC) ) and subsequent neurodegeneration. However, despite considerable research effort, the molecular mechanisms underlying prion-induced neurodegeneration are poorly understood. Here, we explore the hypothesis that prions induce dysfunction of the PI3K/Akt/GSK-3 signalling pathway. METHODS: We employed two parallel approaches. Using cell cultures derived from mouse primary neurones and from a human neuronal cell line, we identified common elements that were modified by the neurotoxic fragment of PrP(106-126) . These studies were then complemented by comparative analyses in a mouse model of prion infection. RESULTS: The presence of a polymerized fragment of the prion protein (PrP(106-126) ) or of a prion strain altered PI3K-mediated signalling, as evidenced by Akt inhibition and GSK-3 activation. PI3K activation by the addition of insulin or the expression of a constitutively active Akt mutant restored normal levels of Akt and GSK-3 activity. These changes were correlated with a reduction in caspase activity and an increase in neuronal survival. Moreover, we found that activation of caspase 3, Erk and GSK-3 are common features of PrP(106-126) -mediated neurotoxicity in cellular systems and prion infection in the mouse cerebellum, while activation of caspase 12 and JNK was observed in cellular models. CONCLUSIONS: Our findings in cell culture and in vivo models of prion disease demonstrate marked alterations to the PI3K/Akt/GSK-3 pathway and suggest that two additional pathways contribute to PrP-induced neurotoxicity as responsible of JNK and caspase 12 activation.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Doenças Priônicas/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Modelos Animais de Doenças , Humanos , Camundongos , Fragmentos de Peptídeos/metabolismo , Príons/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...