Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 8704, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31213625

RESUMO

Water mobility in cancer cells could be a powerful parameter to predict the progression or remission of tumors. In the present descriptive work, new insight into this concept was achieved by combining neutron scattering and thermal analyses. The results provide the first step to untangle the role played by water dynamics in breast cancer cells (MCF-7) after treatment with a chemotherapy drug. By thermal analyses, the cells were probed as micrometric reservoirs of bulk-like and confined water populations. Under this perspective we showed that the drug clearly alters the properties of the confined water. We have independently validated this idea by accessing the cellular water dynamics using inelastic neutron scattering. Finally, analysis of the quasi-elastic neutron scattering data allows us to hypothesize that, in this particular cell line, diffusion increases in the intracellular water in response to the action of the drug on the nanosecond timescale.


Assuntos
Neoplasias da Mama/metabolismo , Hidrodinâmica , Espaço Intracelular/efeitos dos fármacos , Difração de Nêutrons/métodos , Paclitaxel/farmacologia , Água/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Varredura Diferencial de Calorimetria , Difusão/efeitos dos fármacos , Humanos , Espaço Intracelular/metabolismo , Células MCF-7 , Nêutrons
2.
J Phys Chem B ; 122(43): 10031-10043, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30251848

RESUMO

The impact of pore geometry and functionality on the dynamics of water nanoconfined in porous media are the subject of some debate. We report the synthesis and small-angle X-ray scattering (SAXS) characterization of a series of perdeuterated gemini surfactant lyotropic liquid crystals (LLCs), in which convex, water-filled nanopores of well-defined dimensions are lined with carboxylate functionalities. Quasielastic neutron scattering (QENS) measurements of the translational water dynamics in these dicarboxylate LLC nanopores as functions of the surfactant hydration state and the charge compensating counterion (Na+, K+, NMe4+) reveal that the measured dynamics depend primarily on surfactant hydration, with an unexpected counterion dependence that varies with hydration number. We rationalize these trends in terms of a balance between counterion-water attractions and the nanopore volume excluded by the counterions. On the basis of electron density maps derived from SAXS analyses of these LLCs, we directly show that the volume excluded by the counterions depends on both their size and spatial distribution in the water-filled channels. The translational water dynamics in the convex pores of these LLCs are also slower than those reported in the concave pores of AOT reverse micelles, implying that water dynamics also depend on the nanopore curvature.


Assuntos
Nanoporos , Óxido de Deutério/química , Cristais Líquidos/química , Potássio/química , Espalhamento a Baixo Ângulo , Sódio/química , Tensoativos/química , Água/química , Difração de Raios X
3.
Biochemistry ; 57(29): 4263-4275, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29901984

RESUMO

Optimal enzyme activity depends on a number of factors, including structure and dynamics. The role of enzyme structure is well recognized; however, the linkage between protein dynamics and enzyme activity has given rise to a contentious debate. We have developed an approach that uses an aqueous mixture of organic solvent to control the functionally relevant enzyme dynamics (without changing the structure), which in turn modulates the enzyme activity. Using this approach, we predicted that the hydride transfer reaction catalyzed by the enzyme dihydrofolate reductase (DHFR) from Escherichia coli in aqueous mixtures of isopropanol (IPA) with water will decrease by ∼3 fold at 20% (v/v) IPA concentration. Stopped-flow kinetic measurements find that the pH-independent khydride rate decreases by 2.2 fold. X-ray crystallographic enzyme structures show no noticeable differences, while computational studies indicate that the transition state and electrostatic effects were identical for water and mixed solvent conditions; quasi-elastic neutron scattering studies show that the dynamical enzyme motions are suppressed. Our approach provides a unique avenue to modulating enzyme activity through changes in enzyme dynamics. Further it provides vital insights that show the altered motions of DHFR cause significant changes in the enzyme's ability to access its functionally relevant conformational substates, explaining the decreased khydride rate. This approach has important implications for obtaining fundamental insights into the role of rate-limiting dynamics in catalysis and as well as for enzyme engineering.


Assuntos
2-Propanol/metabolismo , Ativação Enzimática/efeitos dos fármacos , Escherichia coli/enzimologia , Solventes/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo , Cristalografia por Raios X/métodos , Escherichia coli/química , Escherichia coli/metabolismo , Cinética , Simulação de Dinâmica Molecular , Conformação Proteica/efeitos dos fármacos , Eletricidade Estática , Tetra-Hidrofolato Desidrogenase/química , Viscosidade , Água/metabolismo
4.
J Phys Chem B ; 120(24): 5455-69, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27276502

RESUMO

That incoherent scattering from protiated molecular liquids adds a constant background to the measured scattering intensity is well-known, but less appreciated is the fact that coherent scattering is also induced by the presence of hydrogen in a deuterated liquid. In fact, the scattering intensity can be very sensitive, in the small-q region, with respect to the amounts and distribution of residual H in the system. We used 1,4-dioxane liquid to demonstrate that the partial structure factors of the HD and DD atom pairs contribute significantly to intermolecular scattering and that uncertainty in the extent of deuteration account for discrepancies between simulations and measurements. Both contributions to uncertainty have similar magnitudes: scattering interference of the hydrogen-deuterium pair, and complementary interference from the deuterium-deuterium pair by virtue of chemical inhomogeneity. This situation arises in practice since deuteration of liquids is often 99% or less. A combined experimental and extensive computational study of static thermal neutron scattering of 1,4-dioxane demonstrates the foregoing. We show, through simulations, that the reason for the differences is the content of protiated dioxane (vendors quote 1%). We estimate that up to 5% (at 298 K and at 343 K) protiated molar fraction may be involved in generating the scattering differences. Finally, we find that the particular distribution of hydrogen in the protiated molecules affects the results significantly; here, we considered molecules to be either fully protiated or fully deuterated. This scenario best reconciles the computational and experimental results, and leads us to speculate that the deuteration synthesis process tends to leave a molecule either fully deuterated or fully protiated. Although we have used 1,4-dioxane as a model liquid, the effects described in this study extend to similar liquids, and similar systematic experimental/computational studies can be performed to either understand measurements or calibrate/validate molecular dynamics models.

5.
J Phys Chem A ; 119(49): 11900-10, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26575434

RESUMO

We report a novel production method for uranium oxyfluoride [(UO2)7F14(H2O)7]·4H2O, referred to as structure D. Structure D is produced as a product of hydrating anhydrous uranyl fluoride, UO2F2, through the gas phase at ambient temperatures followed by desiccation by equilibration with a dry environment. We follow the structure of [(UO2)7F14(H2O)7]·4H2O through an intermediate, liquid-like phase, wherein the coordination number of the uranyl ion is reduced to 5 (from 6 in the anhydrous structure), and a water molecule binds as an equatorial ligand to the uranyl ion. Quasielastic neutron scattering results compare well with previous measurements of mineral hydrates. The two groups of structurally distinct water molecules in D perform restricted motion on a length scale commensurate with the O-H bond (r = 0.92 Å). The more tightly bound equatorial ligand waters rotate slower (Dr = 2.2 ps(-1)) than their hydrogen-bonded partners (Dr = 28.7 ps(-1)).

6.
Rev Sci Instrum ; 84(10): 105104, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24182160

RESUMO

The Spallation Neutron Source (SNS) facility at the Oak Ridge National Laboratory is designed with an upgrade option for a future low repetition rate, long wavelength second target station. This second target station is intended to complement the scientific capabilities of the 1.4 MW, 60 Hz high power first target station. Two upgrade possibilities have been considered, the short and the long pulse options. In the short pulse mode, proton extraction occurs after the pulse compression in the accumulator ring. The proton pulse structure is thus the same as that for the first target station with a pulse width of ~0.7 µs. In the long pulse mode, protons are extracted as they are produced by the linac, with no compression in the accumulator ring. The time width of the uncompressed proton pulse is ~1 ms. This difference in proton pulse structure means that neutron pulses will also be different. Neutron scattering instruments thus have to be designed and optimized very differently for these two source options which will directly impact the overall scientific capabilities of the SNS facility. In order to assess the merits of the short and long pulse target stations, we investigated a representative suit of neutron scattering instruments and evaluated their performance under each option. Our results indicate that the short pulse option will offer significantly better performance for the instruments and is the preferred choice for the SNS facility.

7.
Curr Protoc Protein Sci ; Chapter 17: Unit17.16, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23546619

RESUMO

Neutron scattering is exquisitely sensitive to the position, concentration, and dynamics of hydrogen atoms in materials and is a powerful tool for the characterization of structure-function and interfacial relationships in biological systems. Modern neutron scattering facilities offer access to a sophisticated, nondestructive suite of instruments for biophysical characterization that provides spatial and dynamic information spanning from Ångstroms to microns and from picoseconds to microseconds, respectively. Applications in structural biology range from the atomic-resolution analysis of individual hydrogen atoms in enzymes through to meso- and macro-scale analysis of complex biological structures, membranes, and assemblies. The large difference in neutron scattering length between hydrogen and deuterium allows contrast variation experiments to be performed and enables H/D isotopic labeling to be used for selective and systematic analysis of the local structure, dynamics, and interactions of multi-component systems. This overview describes the available techniques and summarizes their practical application to the study of biomolecular systems.


Assuntos
Biologia Molecular/métodos , Difração de Nêutrons/métodos , Membrana Celular/química , Deutério , Modelos Moleculares , Nêutrons , Proteínas/química
8.
Rev Sci Instrum ; 84(2): 025113, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23464257

RESUMO

The high power target station at the Spallation Neutron Source (SNS) currently has about 20 completed neutron scattering instruments. With a broad coverage of the momentum transfer (Q)-energy (E) space, these instruments serve an extensive user community. In an effort to further expand the scientific capabilities of the SNS instrument suites, we propose a low background, inverse geometry Brillouin inelastic spectrometer for the SNS which will expand the Q-E coverage of the current instrument suite and facilitate the study of inelastic and quasi-elastic scatterings at low Q values. The possible location for the proposed instrument is either beamline 8 which views the decoupled water moderator, or beamline 14A, which views a cold, coupled super critical hydrogen moderator. The instrument parameters, optimizations, and performances at these two beamline locations are discussed.

9.
Rev Sci Instrum ; 84(12): 125104, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24387465

RESUMO

In this work, we investigate the effect of neutron moderator dimensions on the performance of neutron scattering instruments at the Spallation Neutron Source (SNS). In a recent study of the planned second target station at the SNS facility, we have found that the dimensions of a moderator play a significant role in determining its surface brightness. A smaller moderator may be significantly brighter over a smaller viewing area. One of the immediate implications of this finding is that for modern neutron scattering instrument designs, moderator dimensions and brightness have to be incorporated as an integrated optimization parameter. Here, we establish a strategy of matching neutron scattering instruments with moderators using analytical and Monte Carlo techniques. In order to simplify our treatment, we group the instruments into two broad categories: those with natural collimation and those that use neutron guide systems. For instruments using natural collimation, the optimal moderator selection depends on the size of the moderator, the sample, and the moderator brightness. The desired beam divergence only plays a role in determining the distance between sample and moderator. For instruments using neutron optical systems, the smallest moderator available that is larger than the entrance dimension of the closest optical element will perform the best (assuming, as is the case here that smaller moderators are brighter).

10.
J Phys Condens Matter ; 24(6): 064115, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22277831

RESUMO

The use of contrast variation in spin-echo small angle neutron scattering (SESANS) experiments is discussed for the case of colloidal structural investigation. On the basis of calculations for several model systems, we find that the contrast variation SESANS technique, in terms of the measured SESANS correlation function G(z), is not sensitive to the structural characteristics of colloidal suspensions consisting of particles with uniform scattering length density profiles. However, its ability to resolve structural heterogeneity, at both intra-colloidal and inter-colloidal length scales, is clearly demonstrated. The prospect of using this new technique to investigate structural information that is difficult to probe in other ways is also explored.


Assuntos
Difração de Nêutrons/métodos , Espalhamento a Baixo Ângulo , Modelos Teóricos , Suspensões
11.
J Phys Condens Matter ; 24(6): 064116, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22277898

RESUMO

Polyamidoamine (PAMAM) dendrimers and their charged state in deuterium oxide have been investigated with proton pulsed field gradient diffusion nuclear magnetic resonance (PFG-NMR) and small-angle neutron scattering (SANS) techniques. NMR measurements suggest that significant variation of the hydrodynamic radius, calculated by the Stokes-Einstein relation with appropriate surface conditions, is observed upon increasing the molecular protonation. However, a comparative SANS experiment indicates little dependence of the dendrimer global size, in terms of its radius of gyration, on molecular protonation. The inconsistency indicates the necessity of incorporating the effect of molecular interface modification and molecular porosity provided by dressed counterions, when dynamical measurements are used for the determination of the structural characteristics of ionic soft colloids even in dilute suspensions.


Assuntos
Dendrímeros/química , Difração de Nêutrons , Prótons , Espalhamento a Baixo Ângulo , Difusão , Hidrodinâmica , Espectroscopia de Ressonância Magnética , Soluções
12.
J Chem Phys ; 135(14): 144903, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-22010731

RESUMO

An experimental scheme using contrast variation small angle neutron scattering technique is developed to investigate the structural characteristics of amine-terminated poly(amidoamine) dendrimers solutions. Using this methodology, we present the dependence of both the intra-dendrimer water and the polymer distribution on molecular protonation, which can be precisely adjusted by tuning the pH of the solution. Assuming spherical symmetry of the spatial arrangement of the constituent components of dendrimer, and that the atomic ratio of hydrogen-to-deuterium for the solvent residing within the cavities of dendrimer is identical to that for the solvent outside the dendrimer, the intra-dendrimer water distribution along the radial direction is determined. Our result clearly reveals an outward relocation of the peripheral groups, as well as enhanced intra-dendrimer hydration, upon increasing the molecular protonation and, therefore, allows the determination of segmental backfolding in a quantitative manner. The connection between these charge-induced structural changes and our recently observed progressively active segmental dynamics is also discussed.

13.
J Phys Chem B ; 115(28): 8925-36, 2011 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-21608980

RESUMO

Proteins are dynamic objects, constantly undergoing conformational fluctuations, yet the linkage between internal protein motion and function is widely debated. This study reports on the characterization of temperature-activated collective and individual atomic motions of oxidized rubredoxin, a small 53 residue protein from thermophilic Pyrococcus furiosus (RdPf). Computational modeling allows detailed investigations of protein motions as a function of temperature, and neutron scattering experiments are used to compare to computational results. Just above the dynamical transition temperature which marks the onset of significant anharmonic motions of the protein, the computational simulations show both a significant reorientation of the average electrostatic force experienced by the coordinated Fe(3+) ion and a dramatic rise in its strength. At higher temperatures, additional anharmonic modes become activated and dominate the electrostatic fluctuations experienced by the ion. At 360 K, close to the optimal growth temperature of P. furiosus, simulations show that three anharmonic modes including motions of two conserved residues located at the protein active site (Ile7 and Ile40) give rise to the majority of the electrostatic fluctuations experienced by the Fe(3+) ion. The motions of these residues undergo displacements which may facilitate solvent access to the ion.


Assuntos
Rubredoxinas/química , Simulação por Computador , Modelos Moleculares , Simulação de Dinâmica Molecular , Oxirredução , Eletricidade Estática
14.
J Chem Phys ; 134(9): 094504, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21384982

RESUMO

Spin-echo small angle neutron scattering (SESANS) provides a new experimental tool for structural investigation. Due to the action of spin-echo encoding, SESANS measures a spatial correlation function in real space, as opposed to the structure factor S(Q), I(Q), in momentum (Q) space measured by conventional small angle neutron scattering. To establish the usefulness of SESANS in structural characterization, particularly for interacting colloidal suspensions, we have previously conducted a theoretical study of the SESANS correlation functions for model systems consisting of particles with uniform density profiles [X. Li, C.-Y. Shew, Y. Liu, R. Pynn, E. Liu, K. W. Herwig, G. S. Smith, J. L. Robertson, and W.-R. Chen J. Chem. Phys. 132, 174509 (2010)]. Within the same framework, we explore in the present paper the prospect of using SESANS to investigate the structural characteristics of colloidal systems consisting of particles with nonuniform intraparticle mass distribution. As an example, a Gaussian model of interacting soft colloids is used to investigate the manifestation of structural softness in a SESANS measurement. The exploration shows a characteristically different SESANS correlation function for interacting soft colloids, in comparison to that of a uniform hard sphere system. The difference arises from the Abel transform imbedded in the mathematical formalism bridging the SESANS spectra and the spatial autocorrelation function.


Assuntos
Coloides/química , Estrutura Molecular , Difração de Nêutrons , Espalhamento a Baixo Ângulo
15.
J Chem Phys ; 133(14): 144912, 2010 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-20950046

RESUMO

We develop an experimental approach to analyze the water distribution around a core-shell micelle formed by polystyrene-block-poly[styrene-g-poly(ethylene oxide (PEO)] block copolymers in aqueous media at a fixed polymeric concentration of 10 mg/ml through contrast variation small angle neutron scattering (SANS) study. Through varying the D(2)O/H(2)O ratio, the scattering contributions from the water molecules and the micellar constituent components can be determined. Based on the commonly used core-shell model, a theoretical coherent scattering cross section incorporating the effect of water penetration is developed and used to analyze the SANS I(Q). We have successfully quantified the intramicellar water distribution and found that the overall micellar hydration level increases with the increase in the molecular weight of hydrophilic PEO side chains. Our work presents a practical experimental means for evaluating the intramacromolecular solvent distributions of general soft matter systems.

16.
J Chem Phys ; 132(17): 174509, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20459176

RESUMO

The application of the spin-echo small angle neutron scattering (SESANS) technique for structural characterization of interacting colloidal suspensions is considered in this work. The framework to calculate the theoretical SESANS correlation function is briefly laid out. A general discussion regarding the features of the SESANS correlation functions obtained from different model systems is presented. In comparison with conventional elastic scattering tools operating at the same length scale, our mean-field calculations, based on a monodisperse spherical colloidal system, show that the real-space measurement provided by SESANS presents a powerful probe for studying the intercolloid potential. The reason of this sensitivity is discussed from the standpoint of way, in which how the spatial correlations are manifested in different neutron scattering implementations. This study leads to a better understanding regarding the distinction between SANS and SESANS.

17.
J Chem Phys ; 132(12): 124901, 2010 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-20370144

RESUMO

An accurate determination of the structure characteristics of protonated generation 5 polyamidoamine dendrimers in aqueous solution has been conducted by analyzing the small angle neutron scattering databased on a statistical mechanics model. In our investigation, the primary focus is to elucidate the effect of counterion valence on the counterion association and its impact on the intramolecular density profile within a dendrimer. In the range of our study for molecular protonation, a strong dependence of the structural properties of charged dendrimers on counterion valence is revealed. Our findings indicate that the association of a large amount of divalent counterions significantly reduces the effective charge of a dendrimer molecule. Surprisingly, no discernible transition of the density distribution profile is observed for the dendrimer charged by D(2)SO(4), as opposed to our previous observation of a pronounced transition in intramolecular density profile for the dendrimer charged by DCl. These findings may be understood from the thermodynamic processes of counterions.

18.
J Phys Chem B ; 114(5): 1751-6, 2010 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-20070093

RESUMO

Small-angle neutron scattering (SANS) experiments were carried out to investigate the structure of aqueous (D(2)O) G4 PAMAM dendrimer solutions as a function of molecular protonation and dendrimer concentration. Our results indicate unambiguously that, although the radius of gyration R(G) remains nearly invariant, the dendrimer radial density profile rho(r) decreases in the dendrimer core with a continuous increase in protonation. This discovery also suggests that R(G), which is commonly adopted by numerous simulation and experimental works in describing the global dendrimer size, is not suitable as the index parameter to characterize the dendrimer conformation change. We also found that R(G) and rho(r), for dendrimers dissolved in both neutral and acidified solutions, remain nearly constant over the studied concentration range. We further demonstrate that the outcome of the widely used Guinier method is questionable for extracting R(G) in the concentration range studied. Our results reveal the polymer colloid structural duality as benchmarks for future experimental and theoretical studies and provide a critical step toward understanding drug encapsulation by ionic bonds.

19.
J Phys Chem B ; 111(27): 7725-34, 2007 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-17571870

RESUMO

This work reports neutron diffraction and incoherent neutron scattering experiments on N-methylacetamide (NMA), which can be considered the model building block for the peptide linkage of polypeptides and proteins. Using the neutron data, we have been able to associate the onset of a striking negative thermal expansion (NTE) along the a-axis with a dynamical transition around 230 K, consistent with our calorimetric experiments. Observation of the NTE raises the question of possible proton transfer in NMA, which, from our data alone, still cannot be settled. We can only speculate that intermolecular repulsive forces increase as the O...H distance decreases upon cooling, and that around 230 K the lattice relaxes without observation of an actual proton transfer. However, the existence of a nonharmonic potential, reflected by the behavior of the phonon vibrations together with the observation of NTE, could be justified by the "vibrational" polaron theory in which a dynamic localization of the vibrational energy is created by coupling an internal molecular mode to a lattice phonon. More generally, this work shows that neutron powder diffraction techniques can be very powerful for investigating structural deformations in small peptide systems.

20.
Langmuir ; 21(16): 7507-12, 2005 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-16042486

RESUMO

High-resolution ellipsometry and neutron diffraction measurements have been used to investigate the structure, growth, and wetting behavior of fluid pentane (n-C(5)H(12)) films adsorbed on graphite substrates. We present isotherms of the thickness of pentane films adsorbed on the basal-plane surfaces of a pyrolytic graphite substrate as a function of the vapor pressure. These isotherms are measured ellipsometrically for temperatures between 130 and 190 K. We also describe neutron diffraction measurements in the temperature range 11-140 K on a deuterated pentane (n-C(5)D(12)) monolayer adsorbed on an exfoliated graphite substrate. Below a temperature of 99 K, the diffraction patterns are consistent with a rectangular centered structure. Above the pentane triple point at 143.5 K, the ellipsometric measurements indicate layer-by-layer adsorption of at least seven fluid pentane layers, each having the same optical thickness. Analysis of the neutron diffraction pattern of a pentane monolayer at a temperature of 130 K is consistent with small clusters having a rectangular-centered structure and an area per molecule of approximately 37 A(2) in coexistence with a fluid monolayer phase. Assuming values of the polarizability tensor from the literature and that the monolayer fluid has the same areal density as that inferred for the coexisting clusters, we calculate an optical thickness of the fluid pentane layers in reasonable agreement with that measured by ellipsometry. We discuss how these results support the previously proposed "footprint reduction" mechanism of alkane monolayer melting. In the hypercritical regime, we show that the layering behavior is consistent with the two-dimensional Ising model and determine the critical temperatures for layers n = 2-5.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...