Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 185(12): 2164-2183.e25, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35597241

RESUMO

X inactivation (XCI) is triggered by upregulation of XIST, which coats the chromosome in cis, promoting formation of a heterochromatic domain (Xi). XIST role beyond initiation of XCI is only beginning to be elucidated. Here, we demonstrate that XIST loss impairs differentiation of human mammary stem cells (MaSCs) and promotes emergence of highly tumorigenic and metastatic carcinomas. On the Xi, XIST deficiency triggers epigenetic changes and reactivation of genes overlapping Polycomb domains, including Mediator subunit MED14. MED14 overdosage results in increased Mediator levels and hyperactivation of the MaSC enhancer landscape and transcriptional program, making differentiation less favorable. We further demonstrate that loss of XIST and Xi transcriptional instability is common among human breast tumors of poor prognosis. We conclude that XIST is a gatekeeper of human mammary epithelium homeostasis, thus unveiling a paradigm in the control of somatic cell identity with potential consequences for our understanding of gender-specific malignancies.


Assuntos
Complexo Mediador/metabolismo , Células-Tronco Neoplásicas/metabolismo , RNA Longo não Codificante/metabolismo , Neoplasias da Mama/metabolismo , Diferenciação Celular , Epigênese Genética , Humanos , RNA Longo não Codificante/genética , Inativação do Cromossomo X
2.
Am J Hum Genet ; 109(2): 361-372, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35051358

RESUMO

Nuclear deubiquitinase BAP1 (BRCA1-associated protein 1) is a core component of multiprotein complexes that promote transcription by reversing the ubiquitination of histone 2A (H2A). BAP1 is a tumor suppressor whose germline loss-of-function variants predispose to cancer. To our knowledge, there are very rare examples of different germline variants in the same gene causing either a neurodevelopmental disorder (NDD) or a tumor predisposition syndrome. Here, we report a series of 11 de novo germline heterozygous missense BAP1 variants associated with a rare syndromic NDD. Functional analysis showed that most of the variants cannot rescue the consequences of BAP1 inactivation, suggesting a loss-of-function mechanism. In T cells isolated from two affected children, H2A deubiquitination was impaired. In matching peripheral blood mononuclear cells, histone H3 K27 acetylation ChIP-seq indicated that these BAP1 variants induced genome-wide chromatin state alterations, with enrichment for regulatory regions surrounding genes of the ubiquitin-proteasome system (UPS). Altogether, these results define a clinical syndrome caused by rare germline missense BAP1 variants that alter chromatin remodeling through abnormal histone ubiquitination and lead to transcriptional dysregulation of developmental genes.


Assuntos
Proteína BRCA1/genética , Mutação em Linhagem Germinativa , Mutação com Perda de Função , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Adolescente , Proteína BRCA1/imunologia , Criança , Pré-Escolar , Cromatina/química , Cromatina/imunologia , Montagem e Desmontagem da Cromatina/genética , Montagem e Desmontagem da Cromatina/imunologia , Família , Feminino , Regulação da Expressão Gênica , Heterozigoto , Histonas/genética , Histonas/imunologia , Fator C1 de Célula Hospedeira/genética , Fator C1 de Célula Hospedeira/imunologia , Humanos , Lactente , Masculino , Transtornos do Neurodesenvolvimento/imunologia , Transtornos do Neurodesenvolvimento/patologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/imunologia , Linfócitos T/imunologia , Linfócitos T/patologia , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/imunologia , Ubiquitina/genética , Ubiquitina/imunologia , Ubiquitina Tiolesterase/deficiência , Ubiquitina Tiolesterase/imunologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/imunologia , Ubiquitinação
3.
Nat Genet ; 53(12): 1686-1697, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34782763

RESUMO

Epigenetic inheritance of gene expression states enables a single genome to maintain distinct cellular identities. How histone modifications contribute to this process remains unclear. Using global chromatin perturbations and local, time-controlled modulation of transcription, we establish the existence of epigenetic memory of transcriptional activation for genes that can be silenced by the Polycomb group. This property emerges during cell differentiation and allows genes to be stably switched after a transient transcriptional stimulus. This transcriptional memory state at Polycomb targets operates in cis; however, rather than relying solely on read-and-write propagation of histone modifications, the memory is also linked to the strength of activating inputs opposing Polycomb proteins, and therefore varies with the cellular context. Our data and computational simulations suggest a model whereby transcriptional memory arises from double-negative feedback between Polycomb-mediated silencing and active transcription. Transcriptional memory at Polycomb targets thus depends not only on histone modifications but also on the gene-regulatory network and underlying identity of a cell.


Assuntos
Epigênese Genética , Mamíferos/genética , Proteínas do Grupo Polycomb/genética , Ativação Transcricional , Animais , Feminino , Código das Histonas , Humanos , Masculino , Camundongos , Complexo Repressor Polycomb 2/genética
4.
Europace ; 22(2): 320-329, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31845994

RESUMO

AIMS: Desmoglein-2 (DSG2) mutations, which encode a heart-specific cadherin crucial for desmosomal adhesion, are frequent in arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D). DSG2 mutations have been associated with higher risk of biventricular involvement. Among DSG2 mutations, mutations of the inhibitory propeptide consensus cleavage-site (Arg-X-Arg/Lys-Arg), are particularly frequent. In the present work, we explored the functional consequences of DSG2 propeptide cleavage site mutations p.Arg49His, p.Arg46Trp, and p.Arg46Gln on localization, adhesive properties, and desmosome incorporation of DSG2. METHODS AND RESULTS: We studied the expression of mutant-DSG2 in human heart and in epithelial and cardiac cellular models expressing wild-type or mutant (p.Arg49His, p.Arg46Trp, and p.Arg46Gln) proDSG2-GFP fusion proteins. The consequences of the p.Arg46Trp mutation on DSG2 adhesiveness were studied by surface plasmon resonance. Incorporation of mutant p.Arg46Trp DSG2 into desmosomes was studied under low-calcium culture conditions and cyclic mechanical stress. We demonstrated in human heart and cellular models that all three mutations prevented N-terminal propeptide cleavage, but did not modify intercellular junction targeting. Surface plasmon resonance experiments showed a propeptide-dependent loss of interaction between the cadherin N-terminal extracellular 1 (EC1) domains. Additionally, proDSG2 mutant proteins were abnormally incorporated into desmosomes under low-calcium culture conditions or following mechanical stress. This was accompanied by an epidermal growth factor receptor-dependent internalization of proDSG2, suggesting increased turnover of unprocessed proDSG2. CONCLUSION: Our results strongly suggest weakened desmosomal adhesiveness due to abnormal incorporation of uncleaved mutant proDSG2 in cellular stress conditions. These results provide new insights into desmosomal cadherin regulation and ARVC/D pathophysiology, in particular, the potential role of mechanical stress on desmosomal dysfunction.


Assuntos
Displasia Arritmogênica Ventricular Direita , Desmogleína 2 , Displasia Arritmogênica Ventricular Direita/genética , Desmogleína 2/genética , Coração , Humanos , Mutação
5.
PLoS One ; 12(8): e0181840, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28767663

RESUMO

BACKGROUND: Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia (ARVC/D) is an inherited cardiomyopathy mainly caused by heterozygous desmosomal gene mutations, the major gene being PKP2. The genetic cause remains unknown in ~50% of probands with routine desmosomal gene screening. The aim of this study was to assess the diagnostic accuracy of whole exome sequencing (WES) in ARVC/D with negative genetic testing. METHODS: WES was performed in 22 patients, all without a mutation identified in desmosomal genes. Putative pathogenic variants were screened in 96 candidate genes associated with other cardiomyopathies/channelopathies. The sequencing coverage depth of PKP2, DSP, DSG2, DSC2, JUP and TMEM43 exons was compared to the mean coverage distribution to detect large insertions/deletions. All suspected deletions were verified by real-time qPCR, Multiplex-Ligation-dependent-Probe-Amplification (MLPA) and cGH-Array. MLPA was performed in 50 additional gene-negative probands. RESULTS: Coverage-depth analysis from the 22 WES data identified two large heterozygous PKP2 deletions: one from exon 1 to 14 and one restricted to exon 4, confirmed by qPCR and MLPA. MLPA identified 2 additional PKP2 deletions (exon 1-7 and exon 1-14) in 50 additional probands confirming a significant frequency of large PKP2 deletions (5.7%) in gene-negative ARVC/D. Putative pathogenic heterozygous variants in EYA4, RBM20, PSEN1, and COX15 were identified in 4 unrelated probands. CONCLUSION: A rather high frequency (5.7%) of large PKP2 deletions, undetectable by Sanger sequencing, was detected as the cause of ARVC/D. Coverage-depth analysis through next-generation sequencing appears accurate to detect large deletions at the same time than conventional putative mutations in desmosomal and cardiomyopathy-associated genes.


Assuntos
Displasia Arritmogênica Ventricular Direita/genética , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla/métodos , Análise de Sequência de DNA/métodos , Adolescente , Adulto , Idoso , Complexo IV da Cadeia de Transporte de Elétrons/genética , Exoma , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Placofilinas/genética , Presenilina-1/genética , Proteínas de Ligação a RNA/genética , Deleção de Sequência , Transativadores/genética , Adulto Jovem
6.
Circ Res ; 118(5): 822-33, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26838788

RESUMO

RATIONALE: Pulmonary arterial hypertension is characterized by vascular remodeling and neomuscularization. PW1(+) progenitor cells can differentiate into smooth muscle cells (SMCs) in vitro. OBJECTIVE: To determine the role of pulmonary PW1(+) progenitor cells in vascular remodeling characteristic of pulmonary arterial hypertension. METHODS AND RESULTS: We investigated their contribution during chronic hypoxia-induced vascular remodeling in Pw1(nLacZ+/-) mouse expressing ß-galactosidase in PW1(+) cells and in differentiated cells derived from PW1(+) cells. PW1(+) progenitor cells are present in the perivascular zone in rodent and human control lungs. Using progenitor markers, 3 distinct myogenic PW1(+) cell populations were isolated from the mouse lung of which 2 were significantly increased after 4 days of chronic hypoxia. The number of proliferating pulmonary PW1(+) cells and the proportion of ß-gal(+) vascular SMC were increased, indicating a recruitment of PW1(+) cells and their differentiation into vascular SMC during early chronic hypoxia-induced neomuscularization. CXCR4 inhibition using AMD3100 prevented PW1(+) cells differentiation into SMC but did not inhibit their proliferation. Bone marrow transplantation experiments showed that the newly formed ß-gal(+) SMC were not derived from circulating bone marrow-derived PW1(+) progenitor cells, confirming a resident origin of the recruited PW1(+) cells. The number of pulmonary PW1(+) cells was also increased in rats after monocrotaline injection. In lung from pulmonary arterial hypertension patients, PW1-expressing cells were observed in large numbers in remodeled vascular structures. CONCLUSIONS: These results demonstrate the existence of a novel population of resident SMC progenitor cells expressing PW1 and participating in pulmonary hypertension-associated vascular remodeling.


Assuntos
Hipertensão Pulmonar/metabolismo , Fatores de Transcrição Kruppel-Like/biossíntese , Músculo Liso Vascular/metabolismo , Células-Tronco/metabolismo , Remodelação Vascular/fisiologia , Animais , Células Cultivadas , Humanos , Hipertensão Pulmonar/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso Vascular/patologia , Ratos , Células-Tronco/patologia
7.
Am J Physiol Cell Physiol ; 303(10): C1104-14, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23015549

RESUMO

Plasticity-related gene-1 (PRG-1) protects neuronal cells from lysophosphatidic acid (LPA) effects. In vascular smooth muscle cells (VSMCs), LPA was shown to induce phenotypic modulation in vitro and vascular remodeling in vivo. Thus we explored the role of PRG-1 in modulating VSMC response to LPA. PCR, Western blot, and immunofluorescence experiments showed that PRG-1 is expressed in rat and human vascular media. PRG-1 expression was strongly inhibited in proliferating compared with quiescent VSMCs both in vitro and in vivo (medial vs. neointimal VSMCs), suggesting that PRG-1 expression is dependent on the cell phenotype. In vitro, adenovirus-mediated overexpression of PRG-1 specifically inhibited LPA-induced rat VSMC proliferation and migration but not platelet-derived growth factor-induced proliferation. This effect was abolished by mutation of a conserved histidine in the lipid phosphate phosphatase family that is essential for interaction with lipid phosphates. In vivo, balloon-induced neointimal formation in rat carotid was significantly decreased in vessels infected with PRG-1 adenovirus compared with ß-galactosidase adenovirus (-71%; P < 0.05). PRG-1 overexpression abolished the activation of the p42/p44 signaling pathway in LPA-stimulated rat VSMCs in culture and in balloon-injured rat carotids. Taken together, these findings provide the first evidence of a protective role of PRG-1 in the vascular media under pathophysiological conditions.


Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Movimento Celular/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Músculo Liso Vascular/fisiologia , Monoéster Fosfórico Hidrolases/metabolismo , Adenoviridae , Animais , Proteínas de Ligação a Calmodulina/genética , Movimento Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Regulação da Expressão Gênica/fisiologia , Vetores Genéticos , Humanos , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Neointima/induzido quimicamente , Monoéster Fosfórico Hidrolases/genética , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...