Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 14(2)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35202152

RESUMO

Epidemiology of Fusarium Head Blight (FHB) of spring barley is relatively little understood. In a five-year study, we assessed quantitative resistance to FHB in an assortment of 17 spring barley genotypes in the field in southern Germany. To this end, we used soil and spray inoculation of plants with F. culmorum and F. avenaceum. This increased disease pressure and provoked genotypic differentiation. To normalize effects of variable weather conditions across consecutive seasons, we used a disease ranking of the genotypes based on quantification of fungal DNA contents and multiple Fusarium toxins in harvested grain. Together, this allowed for assessment of stable quantitative FHB resistance of barley in several genotypes. Fungal DNA contents were positively associated with species-specific Fusarium toxins in single years and over several years in plots with soil inoculation. In those plots, plant height limited FHB; however, this was not observed after spray inoculation. A multiple linear regression model of recorded weather parameter and fungal DNA contents over five years identified time periods during the reproductive phase of barley, in which weather strongly influenced fungal colonization measured in mature barley grain. Environmental conditions before heading and late after anthesis showed strongest associations with F. culmorum DNA in all genotypes, whereas for F. avenaceum, this was less consistent where we observed weather-dependent associations, depending on the genotype. Based on this study, we discuss aspects of practical resistance breeding in barley relevant to improve quantitative resistance to FHB and associated mycotoxin contaminations.


Assuntos
Resistência à Doença , Fusarium , Hordeum , Micotoxinas/análise , DNA Fúngico/análise , Grão Comestível/microbiologia , Fusarium/genética , Genótipo , Hordeum/química , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Hordeum/microbiologia , Micotoxinas/genética , Melhoramento Vegetal , Tempo (Meteorologia)
2.
Front Plant Sci ; 11: 585927, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33469459

RESUMO

One option to achieving greater resiliency for barley production in the face of climate change is to explore the potential of winter and facultative growth habits: for both types, low temperature tolerance (LTT) and vernalization sensitivity are key traits. Sensitivity to short-day photoperiod is a desirable attribute for facultative types. In order to broaden our understanding of the genetics of these phenotypes, we mapped quantitative trait loci (QTLs) and identified candidate genes using a genome-wide association studies (GWAS) panel composed of 882 barley accessions that was genotyped with the Illumina 9K single-nucleotide polymorphism (SNP) chip. Fifteen loci including 5 known and 10 novel QTL/genes were identified for LTT-assessed as winter survival in 10 field tests and mapped using a GWAS meta-analysis. FR-H1, FR-H2, and FR-H3 were major drivers of LTT, and candidate genes were identified for FR-H3. The principal determinants of vernalization sensitivity were VRN-H1, VRN-H2, and PPD-H1. VRN-H2 deletions conferred insensitive or intermediate sensitivity to vernalization. A subset of accessions with maximum LTT were identified as a resource for allele mining and further characterization. Facultative types comprised a small portion of the GWAS panel but may be useful for developing germplasm with this growth habit.

3.
Sci Rep ; 9(1): 9470, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31263124

RESUMO

Tocopherols and tocotrienols, commonly referred to as vitamin E, are essential compounds in food and feed. Due to their lipophilic nature they protect biomembranes by preventing the propagation of lipid-peroxidation especially during oxidative stress. Since their synthesis is restricted to photosynthetic organisms, plant-derived products are the major source of natural vitamin E. In the present study the genetic basis for high vitamin E accumulation in leaves and grains of different barley (Hordeum vulgare L.) accessions was uncovered. A genome wide association study (GWAS) allowed the identification of two genes located on chromosome 7H, homogentisate phytyltransferase (HPT-7H) and homogentisate geranylgeranyltransferase (HGGT) that code for key enzymes controlling the accumulation of tocopherols in leaves and tocotrienols in grains, respectively. Transcript profiling showed a correlation between HPT-7H expression and vitamin E content in leaves. Allele sequencing allowed to decipher the allelic variation of HPT-7H and HGGT genes corresponding to high and low vitamin E contents in the respective tissues. Using the obtained sequence information molecular markers have been developed which can be used to assist smart breeding of high vitamin E barley varieties. This will facilitate the selection of genotypes more tolerant to oxidative stress and producing high-quality grains.


Assuntos
Hordeum , Folhas de Planta , Sementes , Vitamina E , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Estudo de Associação Genômica Ampla , Hordeum/genética , Hordeum/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Vitamina E/genética , Vitamina E/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-26679010

RESUMO

Fusarium head blight (FHB) of small cereals is a disease of global importance with regard to economic losses and mycotoxin contamination harmful to human and animal health. In Germany, FHB is predominantly associated with wheat and F. graminearum is recognised as the major causal agent of the disease, but little is known about FHB of barley. Monitoring of the natural occurrence of FHB on Bavarian barley revealed differences for individual Fusarium spp. in incidence and severity of grain infection between years and between spring and winter barley. Parallel measurement of fungal DNA content in grain and mycotoxin content suggested the importance of F. graminearum in winter barley and of F. langsethiae in spring barley for FHB. The infection success of these two species was associated with certain weather conditions and barley flowering time. Inoculation experiments in the field revealed different effects of five Fusarium spp. on symptom formation, grain yield and mycotoxin production. A significant association between fungal infection of grain and mycotoxin content was observed following natural or artificial infection with the type B trichothecene producer F. culmorum, but not with the type A trichothecene-producing species F. langsethiae and F. sporotrichioides. Trichothecene type A toxin contamination also occurred in the absence of significant damage to grain and did not necessarily promote fungal colonisation.


Assuntos
Fusarium/isolamento & purificação , Hordeum/microbiologia , Doenças das Plantas/microbiologia , Estações do Ano , Tempo (Meteorologia) , DNA Fúngico/genética , Fusarium/genética , Alemanha
5.
J Agric Food Chem ; 63(16): 4252-61, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25867895

RESUMO

To investigate cultivar-specific metabolite changes upon drought stress in barley grain, differently adapted cultivars were field-grown under drought conditions using a rain-out shelter and under normal weather conditions (2010-2012). The grain was subjected to a gas chromatography-mass spectrometry-based metabolite profiling approach allowing the analyses of a broad spectrum of lipophilic and hydrophilic low molecular weight constituents. Multi- and univariate analyses demonstrated that there are grain metabolites which were significantly changed upon drought stress, either decreased or increased in all cultivars. On the other hand, for proteinogenic free amino acids increased concentrations were consistently observed in all seasons only in cultivars for which no drought resistance/tolerance had been described. Consistent decreases were seen only in the group of stress tolerant/resistant cultivars. These cultivar-specific correlations were particularly pronounced for branched-chain amino acids. The results indicate that free amino acids may serve as potential markers for cultivars differently adapted to drought stress.


Assuntos
Aminoácidos/metabolismo , Hordeum/química , Hordeum/fisiologia , Água/metabolismo , Aminoácidos/análise , Secas , Cromatografia Gasosa-Espectrometria de Massas , Hordeum/classificação , Sementes/química , Sementes/metabolismo , Estresse Fisiológico , Água/análise
6.
Theor Appl Genet ; 126(12): 3091-102, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24068343

RESUMO

KEY MESSAGE: In two Spanish barley landraces with outstanding resistance to scald, the Rrs1 Rh4 locus was fine mapped including all known markers used in previous studies and closely linked markers were developed. Scald, caused by Rhynchosporium commune, is one of the most prevalent barley diseases worldwide. A search for new resistance sources revealed that Spanish landrace-derived lines SBCC145 and SBCC154 showed outstanding resistance to scald. They were crossed to susceptible cultivar Beatrix to create large DH-mapping populations of 522 and 416 DH lines that were scored for disease resistance in the greenhouse using two R. commune isolates. To ascertain the pattern of resistance, parents and reference barley lines with known scald resistance were phenotyped with a panel of differential R. commune isolates. Subpopulations were genotyped with the Illumina GoldenGate 1,536 SNP Assay and a large QTL in the centromeric region of chromosome 3H, known to harbour several scald resistance genes and/or alleles, was found in both populations. Five SNP markers closest to the QTL were converted into CAPS markers. These CAPS markers, together with informative SSR markers used in other scald studies, confirmed the presence of the Rrs1 locus. The panel of differential scald isolates indicated that the allele carried by both donors was Rrs1 Rh4 . The genetic distance between Rrs1 and its flanking markers was 1.2 cM (11_0010) proximally and 0.9 cM (11_0823) distally, which corresponds to a distance of just below 9 Mbp. The number and nature of scald resistance genes on chromosome 3H are discussed. The effective Rrs1 allele found and the closely linked markers developed are already useful tools for molecular breeding programs and provide a good step towards the identification of candidate genes.


Assuntos
Ascomicetos/patogenicidade , Mapeamento Cromossômico , Resistência à Doença/genética , Genes de Plantas/genética , Genética Populacional , Hordeum/genética , Imunidade Inata/genética , Doenças das Plantas/genética , Ascomicetos/classificação , Cromossomos de Plantas/genética , DNA de Plantas/genética , Marcadores Genéticos/genética , Hordeum/imunologia , Hordeum/microbiologia , Repetições de Microssatélites/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia
7.
Nanoscale ; 5(20): 9978-83, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-23989889

RESUMO

We present a measurement scheme that enables quantitative detection of the shot noise in a scanning tunnelling microscope while scanning the sample. As test objects we study defect structures produced on an iridium single crystal at low temperatures. The defect structures appear in the constant current images as protrusions with curvature radii well below the atomic diameter. The measured power spectral density of the noise is very near to the quantum limit with Fano factor F = 1. While the constant current images show detailed structures expected for tunnelling involving d-atomic orbitals of Ir, we find the current noise to be without pronounced spatial variation as expected for shot noise arising from statistically independent events.

8.
Development ; 132(18): 4063-74, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16107478

RESUMO

During Arabidopsis embryo development, cotyledon primordia are generated at transition stage from precursor cells that are not derived from the embryonic shoot apical meristem (SAM). To date, it is not known which genes specifically instruct these precursor cells to elaborate cotyledons, nor is the role of auxin in cotyledon development clear. In laterne mutants, the cotyledons are precisely deleted, yet the hypocotyl and root are unaffected. The laterne phenotype is caused by a combination of two mutations: one in the PINOID (PID) gene and another mutation in a novel locus designated ENHANCER OF PINOID (ENP). The expression domains of shoot apex organising genes such as SHOOT MERISTEMLESS (STM) extend along the entire apical region of laterne embryos. However, analysis of pid enp stm triple mutants shows that ectopic activity of STM does not appear to cause cotyledon obliteration. This is exclusively caused by enp in concert with pid. In pinoid embryos, reversal of polarity of the PIN1 auxin transport facilitator in the apex is only occasional, explaining irregular auxin maxima in the cotyledon tips. By contrast, polarity of PIN1:GFP is completely reversed to basal position in the epidermal layer of the laterne embryo. Consequently auxin, which is believed to be essential for organ formation, fails to accumulate in the apex. This strongly suggests that ENP specifically regulates cotyledon development through control of PIN1 polarity in concert with PID.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Cotilédone/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Fenótipo , Mapeamento Cromossômico , Primers do DNA , Proteínas de Fluorescência Verde , Proteínas de Homeodomínio/genética , Hibridização In Situ , Mutação/genética , Proteínas Serina-Treonina Quinases/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Proc Natl Acad Sci U S A ; 99(19): 12006-10, 2002 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-12198180

RESUMO

Friction is caused by dissipative lateral forces that act between macroscopic objects. An improved understanding of friction is therefore expected from measurements of dissipative lateral forces acting between individual atoms. Here we establish atomic resolution of both conservative and dissipative forces by lateral force microscopy, presenting the resolution of atomic defects. The interaction between a single-tip atom that is oscillated parallel to an Si(111)-(7 x 7) surface is measured. A dissipation energy of up to 4 eV per oscillation cycle is found. The dissipation is explained by a "plucking action of one atom on to the other" as described by G. A. Tomlinson in 1929 [Tomlinson, G. A. (1929) Phil. Mag. 7, 905-939].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...