Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 838(Pt 2): 155831, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35568170

RESUMO

A diverse array of natural and anthropogenic particles found in the aquatic environment, can act as carriers of co-transported matter (CTM), such as nutrients, genetic material and contaminants. Thus, understanding carrier particle transport will increase our understanding of local and global fluxes of exogenous CTM (affiliated with the particle) and endogenous CTM (an inherent part of the particle). In the present contribution, researchers from multiple disciplines collaborated to provide perspectives on the interactions between carrier particles and CTM, and the fundamentals of transport of particles found in the aquatic environment and the generic spherical smooth particles, often used to make predictions about particle behavior in suspension. Evidently, the particles in the aquatic environment show a great variety of characteristics and vary greatly from each other as well as from the generic particle. However, in spite of these differences, many fundamental concepts apply to particles in general. We emphasize the importance of understanding the basic concepts of transport of particle-associated CTM, and the main assumptions in the generic-founded models, which are challenged by the diverging characteristics of particles found in the aquatic environment, as paramount moving forward. Additionally, we identified the need for a conceptual and semantic link between different scientific fields of particle research and initiated the formation of a consistent terminology. Disciplinary and organizational (academic and funding) barriers need to be overcome to enable individual researchers to move beyond their knowledge sphere, to stimulate future interdisciplinary collaborations and to avoid research silos. Hereby, we can foster faster and better progress of evolving research fields on new and emerging anthropogenic carrier particles, and stimulate the development of solutions to the technological and environmental challenges.


Assuntos
Pesquisa Interdisciplinar
2.
J Geophys Res Biogeosci ; 125(4): e2019JG005517, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33842182

RESUMO

Riverine colloids are important carriers of macronutrients, trace metals, and pollutants into marine waters. The aim of the current study was to extend the understanding of iron (Fe) and organic carbon (OC) colloids in boreal rivers and their fate at higher salinities. X-ray absorbance spectroscopy (XAS) and dynamic light scattering (DLS) were combined to explore Fe speciation and colloidal characteristics such as size and surface charge and how these are affected at increasing salinity. XAS confirmed the presence of two Fe phases in the river waters-Fe-organic matter (OM) complexes and Fe(oxy)hydroxides. From DLS measurements on filtered and unfiltered samples, three particle size distributions were identified. The smallest particles (10-40 nm) were positively charged and suggested to consist of essentially bare Fe(oxy)hydroxide nanoparticles. The largest particles (300-900 nm) were dominated by Fe(oxy)hydroxides associated with chromophoric molecular matter. An intermediate size distribution (100-200 nm) with a negative surface charge was presumably dominated by OM and containing Fe-OM complexes. Increasing the salinity resulted in a removal of the smallest distribution. Unexpectedly, both the intermediate and largest size distributions were still detected at high salinity. The collective results suggest that Fe(oxy)hydroxides and Fe-OM complexes are both found across the wide size range studied and that colloidal size does not necessarily reflect either Fe speciation or stability toward salinity-induced aggregation. The findings further demonstrate that also particles beyond the typically studied <0.45-µm size range should be considered to fully understand the riverine transport and fate of macronutrients, trace metals, and pollutants.

3.
R Soc Open Sci ; 6(7): 190321, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31417735

RESUMO

Crustacean copepods in high-latitude lakes frequently alter their pigmentation facultatively to defend themselves against prevailing threats, such as solar ultraviolet radiation (UVR) and visually oriented predators. Strong seasonality in those environments promotes phenotypic plasticity. To date, no one has investigated whether low-latitude copepods, experiencing continuous stress from UVR and predation threats, exhibit similar inducible defences. We here investigated the pigmentation levels of Bahamian 'blue hole' copepods, addressing this deficit. Examining several populations varying in predation risk, we found the lowest levels of pigmentation in the population experiencing the highest predation pressure. In a laboratory experiment, we found that, in contrast with our predictions, copepods from these relatively constant environments did show some changes in pigmentation subsequent to the removal of UVR; however, exposure to water from different predation regimes induced minor and idiosyncratic pigmentation change. Our findings suggest that low-latitude zooplankton in inland environments may exhibit reduced, but non-zero, levels of phenotypic plasticity compared with their high-latitude counterparts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...