Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1751, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409119

RESUMO

The regulation of mass is essential for the development and homeostasis of cells and multicellular organisms. However, cell mass is also tightly linked to cell mechanical properties, which depend on the time scales at which they are measured and change drastically at the cellular eigenfrequency. So far, it has not been possible to determine cell mass and eigenfrequency together. Here, we introduce microcantilevers oscillating in the Ångström range to monitor both fundamental physical properties of the cell. If the oscillation frequency is far below the cellular eigenfrequency, all cell compartments follow the cantilever motion, and the cell mass measurements are accurate. Yet, if the oscillating frequency approaches or lies above the cellular eigenfrequency, the mechanical response of the cell changes, and not all cellular components can follow the cantilever motions in phase. This energy loss caused by mechanical damping within the cell is described by the quality factor. We use these observations to examine living cells across externally applied mechanical frequency ranges and to measure their total mass, eigenfrequency, and quality factor. The three parameters open the door to better understand the mechanobiology of the cell and stimulate biotechnological and medical innovations.


Assuntos
Mamíferos , Animais , Movimento (Física)
2.
Nano Lett ; 23(2): 588-596, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36607826

RESUMO

Microcantilevers are widely employed as mass sensors for biological samples, from single molecules to single cells. However, the accurate mass quantification of living adherent cells is impaired by the microcantilever's mass sensitivity and cell migration, both of which can lead to detect masses mismatching by ≫50%. Here, we design photothermally actuated microcantilevers to optimize the accuracy of cell mass measurements. By reducing the inertial mass of the microcantilever using a focused ion beam, we considerably increase its mass sensitivity, which is validated by finite element analysis and experimentally by gelatin microbeads. The improved microcantilevers allow us to instantly monitor at much improved accuracy the mass of both living HeLa cells and mouse fibroblasts adhering to different substrates. Finally, we show that the improved cantilever design favorably restricts cell migration and thus reduces the large measurement errors associated with this effect.


Assuntos
Células HeLa , Animais , Camundongos , Humanos , Microesferas
3.
Nat Protoc ; 14(11): 3205-3219, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31628446

RESUMO

To understand and control complex tissues, the ability to genetically manipulate single cells is required. However, current delivery methods for the genetic engineering of single cells, including viral transduction, suffer from limitations that restrict their application. Here we present a protocol that describes a versatile technique that can be used for the targeted viral infection of single cells or small groups of cells in any tissue that is optically accessible. First, cells of interest are selected using optical microscopy. Second, a micropipette-loaded with magnetic nanoparticles to which viral particles are bound-is brought into proximity of the cell of interest, and a magnetic field is applied to guide the viral nanoparticles into cellular contact, leading to transduction. The protocol, exemplified here by stamping cultured neurons with adeno-associated viruses (AAVs), is completed in a few minutes and allows stable transgene expression within a few days, at success rates that approach 80%. We outline how this strategy is applied to single-cell infection in complex tissues, and is feasible both in organoids and in vivo.


Assuntos
Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Magnetismo/métodos , Nanopartículas de Magnetita , Animais , Células Cultivadas , Vetores Genéticos/administração & dosagem , Campos Magnéticos , Nanopartículas de Magnetita/administração & dosagem , Neurônios/metabolismo , Ratos , Transdução Genética , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA