Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 137: 185-195, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30818011

RESUMO

Niemann-Pick disease type B is a hereditary rare condition caused by deficiency of the acid sphingomyelinase (ASM) that is needed for lysosomal hydrolysis of sphingomyelin to ceramide and phosphocholine. This deficiency leads to a massive accumulation of sphingomyelin in cells throughout the body, predominantly in the liver, spleen and lungs. Currently, there is no effective treatment available. Olipudase alfa (recombinant human acid sphingomyelinase; rhASM) is an investigational drug that has shown promising results. However, dose-dependent toxicity was observed in mice upon the intravenous administration of rhASM, potentially due to the systemic release of ceramide upon the extracellular degradation of sphingomyelin by rhASM. Using a nanocarrier to deliver the rhASM to cells could improve the therapeutic window by shielding the rhASM to prevent the off-target degradation of sphingomyelin. For this aim, we recombinantly expressed hASM in human cells and loaded it into different liposomal formulations at a drug-to-lipid ratio of 4% (w/w). Among four formulations, the liposomal rhASM formulation with the composition DPPC:DOPS:BMP:CHOL:DiD (59:20:10:10:1 mol%) was selected because of its superiority concerning the encapsulation efficiency of rhASM (21%) and cellular uptake by fibroblasts and macrophages. The selected liposomal rhASM formulation significantly reduced the accumulated lyso-sphingomyelin in NPD-B fibroblasts by 71%, part of this effect was stimulated by the used lipids, compared to 55% when using the free rhASM enzyme. More importantly, the undesired extracellular degradation of sphingomyelin was reduced when using the selected liposomal rhASM by 61% relative to the free rhASM. The presented in vitro data indicate that the liposomal rhASM is effective and may provide a safer intervention than free rhASM.


Assuntos
Fibroblastos/metabolismo , Macrófagos/metabolismo , Proteínas Recombinantes/administração & dosagem , Esfingomielina Fosfodiesterase/administração & dosagem , Esfingomielinas/metabolismo , Animais , Ceramidas/metabolismo , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Lipídeos/química , Lipossomos , Lisossomos/metabolismo , Camundongos , Células RAW 264.7 , Proteínas Recombinantes/metabolismo , Esfingomielina Fosfodiesterase/metabolismo
3.
Front Immunol ; 9: 452, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593719

RESUMO

Background: Human milk is uniquely suited to provide optimal nutrition and immune protection to infants. Human milk oligosaccharides are structural complex and diverse consisting of short chain and long chain oligosaccharides typically present in a 9:1 ratio. 2'-Fucosyllactose (2'FL) is one of the most prominent short chain oligosaccharides and is associated with anti-infective capacity of human milk. Aim: To determine the effect of 2'FL on vaccination responsiveness (both innate and adaptive) in a murine influenza vaccination model and elucidate mechanisms involved. Methods: A dose range of 0.25-5% (w/w) dietary 2'FL was provided to 6-week-old female C57Bl/6JOlaHsd mice 2 weeks prior primary and booster vaccination until the end of the experiment. Intradermal (i.d.) challenge was performed to measure the vaccine-specific delayed-type hypersensitivity (DTH). Antigen-specific antibody levels in serum as well as immune cell populations within several organs were evaluated using ELISA and flow cytometry, respectively. In an ex vivo restimulation assay, spleen cells were cocultured with influenza-loaded bone marrow-derived dendritic cells (BMDCs) to study the effects of 2'FL on vaccine-specific CD4+ and CD8+ T-cell proliferation and cytokine secretions. Furthermore, the direct immune regulatory effects of 2'FL were confirmed using in vitro BMDCs T-cell cocultures. Results: Dietary 2'FL significantly (p < 0.05) enhanced vaccine specific DTH responses accompanied by increased serum levels of vaccine-specific immunoglobulin (Ig) G1 and IgG2a in a dose-dependent manner. Consistently, increased activation marker (CD27) expression on splenic B-cells was detected in mice receiving 2'FL as compared to control mice. Moreover, proliferation of vaccine-specific CD4+ and CD8+ T-cells, as well as interferon-γ production after ex vivo restimulation were significantly increased in spleen cells of mice receiving 2'FL as compared to control mice, which were in line with changes detected within dendritic cell populations. Finally, we confirmed a direct effect of 2'FL on the maturation status and antigen presenting capacity of BMDCs. Conclusion: Dietary intervention with 2'FL improves both humoral and cellular immune responses to vaccination in mice, which might be attributed in part to the direct effects of 2'FL on immune cell differentiation.


Assuntos
Hipersensibilidade Tardia/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Oligossacarídeos/imunologia , Ovalbumina/imunologia , Trissacarídeos/imunologia , Imunidade Adaptativa , Animais , Anticorpos/sangue , Modelos Animais de Doenças , Feminino , Humanos , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Leite , Vacinação
4.
PLoS One ; 12(8): e0183664, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28832637

RESUMO

Metformin improves cardiovascular prognosis in patients with diabetes mellitus, compared to alternative glucose-lowering drugs, despite similar glycemic control. Direct cardiovascular protective properties have therefore been proposed, and studied in preclinical models of myocardial infarction. We now aim to critically assess the quality and outcome of these studies. We present a systematic review, quality assessment and meta-analysis of the effect of metformin in animal studies of experimental myocardial infarction. Through a comprehensive search in Pubmed and EMBASE, we identified 27 studies, 11 reporting on ex vivo experiments and 18 reporting on in vivo experiments. The primary endpoint infarct size as percentage of area at risk was significantly reduced by metformin in vivo (MD -18.11[-24.09,-12.14]) and ex vivo (MD -18.70[-25.39, -12.02]). Metformin improved the secondary endpoints left ventricular ejection fraction (LVEF) and left ventricular end systolic diameter. A borderline significant effect on mortality was observed, and there was no overall effect on cardiac hypertrophy. Subgroup analyses could be performed for comorbidity and timing of treatment (infarct size and mortality) and species and duration of ischemia (LVEF), but none of these variables accounted for significant amounts of heterogeneity. Reporting of possible sources of bias was extremely poor, including randomization (reported in 63%), blinding (33%), and sample size calculation (0%). As a result, risk of bias (assessed using SYRCLE's risk of bias tool) was unclear in the vast majority of studies. We conclude that metformin limits infarct-size and improves cardiac function in animal models of myocardial infarction, but our confidence in the evidence is lowered by the unclear risk of bias and residual unexplained heterogeneity. We recommend an adequately powered, high quality confirmatory animal study to precede a randomized controlled trial of acute administration of metformin in patients undergoing reperfusion for acute myocardial infarction.


Assuntos
Metformina/uso terapêutico , Infarto do Miocárdio/prevenção & controle , Animais , Técnicas In Vitro , Camundongos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Coelhos , Ratos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...