Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 111(4): 936-953, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35696314

RESUMO

In a cross-continental research initiative, including researchers working in Australia and Denmark, and based on joint external funding by a 3-year grant from the Novo Nordisk Foundation, we have used DNA sequencing, extensive chemical profiling and molecular networking analyses across the entire Eremophila genus to provide new knowledge on the presence of natural products and their bioactivities using polypharmocological screens. Sesquiterpenoids, diterpenoids and dimers of branched-chain fatty acids with previously unknown chemical structures were identified. The collection of plant material from the Eremophila genus was carried out according to a 'bioprospecting agreement' with the Government of Western Australia. We recognize that several Eremophila species hold immense cultural significance to Australia's First Peoples. In spite of our best intentions to ensure that new knowledge gained about the genus Eremophila and any potential future benefits are shared in an equitable manner, in accordance with the Nagoya Protocol, we encounter serious dilemmas and potential conflicts in making benefit sharing with Australia's First Peoples a reality.


Assuntos
Diterpenos , Scrophulariaceae , Austrália
2.
Plant J ; 108(2): 555-578, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34324744

RESUMO

Eremophila is the largest genus in the plant tribe Myoporeae (Scrophulariaceae) and exhibits incredible morphological diversity across the Australian continent. The Australian Aboriginal Peoples recognize many Eremophila species as important sources of traditional medicine, the most frequently used plant parts being the leaves. Recent phylogenetic studies have revealed complex evolutionary relationships between Eremophila and related genera in the tribe. Unique and structurally diverse metabolites, particularly diterpenoids, are also a feature of plants in this group. To assess the full dimension of the chemical space of the tribe Myoporeae, we investigated the metabolite diversity in a chemo-evolutionary framework applying a combination of molecular phylogenetic and state-of-the-art computational metabolomics tools to build a dataset involving leaf samples from a total of 291 specimens of Eremophila and allied genera. The chemo-evolutionary relationships are expounded into a systematic context by integration of information about leaf morphology (resin and hairiness), environmental factors (pollination and geographical distribution), and medicinal properties (traditional medicinal uses and antibacterial studies), augmenting our understanding of complex interactions in biological systems.


Assuntos
Evolução Biológica , Eremophila (Planta)/química , Eremophila (Planta)/fisiologia , Adaptação Biológica , Antibacterianos/química , Antibacterianos/farmacologia , Austrália , Diterpenos/química , Medicina Tradicional , Metabolômica/métodos , Myoporaceae/química , Myoporaceae/fisiologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Folhas de Planta/química , Folhas de Planta/metabolismo , Polinização , Resinas Vegetais/química
3.
Phytochemistry ; 166: 112054, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31284174

RESUMO

Eremophila bignoniiflora is a shrub distributed throughout inland northern and eastern Australia, and it has been used in several medicinal applications by some Australian Aboriginal people. In our continued search for anti-diabetic constituents from natural resources, the crude ethyl acetate extract of E. bignoniiflora was found to have protein-tyrosine phosphatase 1B (PTP1B) inhibitory activity with an IC50 value of 23.9 ±â€¯1.9 µg/mL. High-resolution PTP1B inhibition profiling combined with HRMS and NMR were subsequently used to investigate the individual compounds responsible for the observed bioactivity of the crude extract. This led to identification of five undescribed 2(5H)-furanone sesquiterpenes, together with 13 flavonoids and phenolic compounds. Dose-response curves of the isolated compounds revealed that two 2(5H)-furanone sesquiterpene cinnamates and three flavonoids exhibited moderate PTP1B inhibitory activity with IC50 values from 41.4 ±â€¯1.4 to 154.5 ±â€¯8.9 µM.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Furanos/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Scrophulariaceae/química , Sesquiterpenos/química , Sesquiterpenos/farmacologia
4.
Plant Physiol ; 178(3): 1081-1095, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30297456

RESUMO

Cyanogenic glucosides are a class of specialized metabolites widespread in the plant kingdom. Cyanogenic glucosides are α-hydroxynitriles, and their hydrolysis releases toxic hydrogen cyanide, providing an effective chemical defense against herbivores. Eucalyptus cladocalyx is a cyanogenic tree, allocating up to 20% of leaf nitrogen to the biosynthesis of the cyanogenic monoglucoside, prunasin. Here, mass spectrometry analyses of E. cladocalyx tissues revealed spatial and ontogenetic variations in prunasin content, as well as the presence of the cyanogenic diglucoside amygdalin in flower buds and flowers. The identification and biochemical characterization of the prunasin biosynthetic enzymes revealed a unique enzyme configuration for prunasin production in E. cladocalyx This result indicates that a multifunctional cytochrome P450 (CYP), CYP79A125, catalyzes the initial conversion of l-phenylalanine into its corresponding aldoxime, phenylacetaldoxime; a function consistent with other members of the CYP79 family. In contrast to the single multifunctional CYP known from other plant species, the conversion of phenylacetaldoxime to the α-hydroxynitrile, mandelonitrile, is catalyzed by two distinct CYPs. CYP706C55 catalyzes the dehydration of phenylacetaldoxime, an unusual CYP reaction. The resulting phenylacetonitrile is subsequently hydroxylatedby CYP71B103 to form mandelonitrile. The final glucosylation step to yield prunasin is catalyzed by a UDP-glucosyltransferase, UGT85A59. Members of the CYP706 family have not been reported previously to participate in the biosynthesis of cyanogenic glucosides, and the pathway structure in E. cladocalyx represents an example of convergent evolution in the biosynthesis of cyanogenic glucosides in plants.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Eucalyptus/enzimologia , Glucosídeos/metabolismo , Nitrilas/metabolismo , Amigdalina/química , Amigdalina/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Eucalyptus/química , Eucalyptus/genética , Flores/química , Flores/enzimologia , Flores/genética , Glucosídeos/química , Nitrilas/química , Folhas de Planta/química , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plântula/química , Plântula/enzimologia , Plântula/genética
5.
Front Plant Sci ; 9: 892, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30002667

RESUMO

Mass spectrometry based imaging is a powerful tool to investigate the spatial distribution of a broad range of metabolites across a variety of sample types. The recent developments in instrumentation and computing capabilities have increased the mass range, sensitivity and resolution and rendered sample preparation the limiting step for further improvements. Sample preparation involves sectioning and mounting followed by selection and application of matrix. In plant tissues, labile small molecules and specialized metabolites are subject to degradation upon mechanical disruption of plant tissues. In this study, the benefits of cryo-sectioning, stabilization of fragile tissues and optimal application of the matrix to improve the results from MALDI mass spectrometry imaging (MSI) is investigated with hydroxynitrile glucosides as the main experimental system. Denatured albumin proved an excellent agent for stabilizing fragile tissues such as Lotus japonicus leaves. In stem cross sections of Manihot esculenta, maintaining the samples frozen throughout the sectioning process and preparation of the samples by freeze drying enhanced the obtained signal intensity by twofold to fourfold. Deposition of the matrix by sublimation improved the spatial information obtained compared to spray. The imaging demonstrated that the cyanogenic glucosides (CNglcs) were localized in the vascular tissues in old stems of M. esculenta and in the periderm and vascular tissues of tubers. In MALDI mass spectrometry, the imaged compounds are solely identified by their m/z ratio. L. japonicus MG20 and the mutant cyd1 that is devoid of hydroxynitrile glucosides were used as negative controls to verify the assignment of the observed masses to linamarin, lotaustralin, and linamarin acid.

6.
Plant J ; 93(5): 943-958, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29315936

RESUMO

Vitex agnus-castus L. (Lamiaceae) is a medicinal plant historically used throughout the Mediterranean region to treat menstrual cycle disorders, and is still used today as a clinically effective treatment for premenstrual syndrome. The pharmaceutical activity of the plant extract is linked to its ability to lower prolactin levels. This feature has been attributed to the presence of dopaminergic diterpenoids that can bind to dopamine receptors in the pituitary gland. Phytochemical analyses of V. agnus-castus show that it contains an enormous array of structurally related diterpenoids and, as such, holds potential as a rich source of new dopaminergic drugs. The present work investigated the localisation and biosynthesis of diterpenoids in V. agnus-castus. With the assistance of matrix-assisted laser desorption ionisation-mass spectrometry imaging (MALDI-MSI), diterpenoids were localised to trichomes on the surface of fruit and leaves. Analysis of a trichome-specific transcriptome database, coupled with expression studies, identified seven candidate genes involved in diterpenoid biosynthesis: three class II diterpene synthases (diTPSs); three class I diTPSs; and a cytochrome P450 (CYP). Combinatorial assays of the diTPSs resulted in the formation of a range of different diterpenes that can account for several of the backbones of bioactive diterpenoids observed in V. agnus-castus. The identified CYP, VacCYP76BK1, was found to catalyse 16-hydroxylation of the diol-diterpene, peregrinol, to labd-13Z-ene-9,15,16-triol when expressed in Saccharomyces cerevisiae. Notably, this product is a potential intermediate in the biosynthetic pathway towards bioactive furan- and lactone-containing diterpenoids that are present in this species.


Assuntos
Diterpenos/metabolismo , Proteínas de Plantas/metabolismo , Vitex/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Diterpenos/análise , Perfilação da Expressão Gênica , Oxirredução , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plantas Medicinais/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tricomas/metabolismo , Vitex/genética
7.
Plant J ; 89(3): 429-441, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27801964

RESUMO

Tripterygium wilfordii (Celastraceae) is a medicinal plant with anti-inflammatory and immunosuppressive properties. Identification of a vast array of unusual sesquiterpenoids, diterpenoids and triterpenoids in T. wilfordii has spurred investigations of their pharmacological properties. The tri-epoxide lactone triptolide was the first of many diterpenoids identified, attracting interest due to the spectrum of bioactivities. To probe the genetic underpinning of diterpenoid diversity, an expansion of the class II diterpene synthase (diTPS) family was recently identified in a leaf transcriptome. Following detection of triptolide and simple diterpene scaffolds in the root, we sequenced and mined the root transcriptome. This allowed identification of the root-specific complement of TPSs and an expansion in the class I diTPS family. Functional characterization of the class II diTPSs established their activities in the formation of four C-20 diphosphate intermediates, precursors of both generalized and specialized metabolism and a novel scaffold for Celastraceae. Functional pairs of the class I and II enzymes resulted in formation of three scaffolds, accounting for some of the terpenoid diversity found in T. wilfordii. The absence of activity-forming abietane-type diterpenes encouraged further testing of TPSs outside the canonical class I diTPS family. TwTPS27, close relative of mono-TPSs, was found to couple with TwTPS9, converting normal-copalyl diphosphate to miltiradiene. The phylogenetic distance to established diTPSs indicates neo-functionalization of TwTPS27 into a diTPS, a function not previously observed in the TPS-b subfamily. This example of evolutionary convergence expands the functionality of TPSs in the TPS-b family and may contribute miltiradiene to the diterpenoids of T. wilfordii.


Assuntos
Alquil e Aril Transferases/genética , Liases Intramoleculares/genética , Proteínas de Plantas/genética , Tripterygium/genética , Abietanos/química , Abietanos/metabolismo , Alquil e Aril Transferases/classificação , Alquil e Aril Transferases/metabolismo , Sequência de Aminoácidos , Diterpenos/química , Diterpenos/metabolismo , Compostos de Epóxi/química , Compostos de Epóxi/metabolismo , Perfilação da Expressão Gênica/métodos , Liases Intramoleculares/metabolismo , Estrutura Molecular , Monoterpenos/química , Monoterpenos/metabolismo , Família Multigênica , Fenantrenos/química , Fenantrenos/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Homologia de Sequência de Aminoácidos , Tripterygium/enzimologia
8.
J Nat Prod ; 79(4): 1063-72, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-26960032

RESUMO

According to the International Diabetes Federation, type 2 diabetes (T2D) has reached epidemic proportions, affecting more than 382 million people worldwide. Inhibition of protein tyrosine phosphatase-1B (PTP1B) and α-glucosidase is a recognized therapeutic approach for management of T2D and its associated complications. The lack of clinical drugs targeting PTP1B and side effects of the existing α-glucosidase drugs, emphasize the need for new drug leads for these T2D targets. In the present work, dual high-resolution PTP1B and α-glucosidase inhibition profiles of Eremophila gibbosa, E. glabra, and E. aff. drummondii "Kalgoorlie" were used for pinpointing α-glucosidase and/or PTP1B inhibitory constituents directly from the crude extracts. A subsequent targeted high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy (HPLC-HRMS-SPE-NMR) analysis and preparative-scale HPLC isolation led to identification of 21 metabolites from the three species, of which 16 were serrulatane-type diterpenoids (12 new) associated with either α-glucosidase and/or PTP1B inhibition. This is the first report of serrulatane-type diterpenoids as potential α-glucosidase and/or PTP1B inhibitors.


Assuntos
Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Cromatografia Líquida de Alta Pressão , Diabetes Mellitus Tipo 2 , Inibidores de Glicosídeo Hidrolases/química , Humanos , Estrutura Molecular , Scrophulariaceae , Extração em Fase Sólida , alfa-Glucosidases/efeitos dos fármacos
9.
Ann Bot ; 112(4): 651-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23378522

RESUMO

BACKGROUND AND AIMS: Plant defence metabolites are considered costly due to diversion of energy and nutrients away from growth. These costs combined with changes in resource availability and herbivory throughout plant ontogeny are likely to promote changes in defence metabolites. A comprehensive understanding of plant defence strategy requires measurement of lifetime ontogenetic trajectories--a dynamic component largely overlooked in plant defence theories. This study aimed to compare ontogenetic trajectories of foliar phenolics and terpenoids. Phenolics are predicted to be inexpensive to biosynthesize, whereas expensive terpenoids also require specialized, non-photosynthetic secretory structures to avoid autotoxicity. Based on these predicted costs, it is hypothesized that phenolics would be maximally deployed early in ontogeny, whereas terpenoids would be maximally deployed later, once the costs of biosynthesis and foregone photosynthesis could be overcome by enhanced resource acquisition. METHODS: Leaves were harvested from a family of glasshouse-grown Eucalyptus froggattii seedlings, field-grown saplings and the maternal parent tree, and analysed for total terpenoids and phenolics. KEY RESULTS: Foliar phenolics were highest in young seedlings and lowest in the adult tree. Indeed the ratio of total phenolics to total terpenoids decreased in a significantly exponential manner with plant ontogeny. Most individual terpene constituents increased with plant ontogeny, but some mono- and sesquiterpenes remained relatively constant or even decreased in concentration as plants aged. CONCLUSIONS: Plant ontogeny can influence different foliar defence metabolites in directionally opposite ways, and the contrasting trajectories support our hypothesis that phenolics would be maximally deployed earlier than terpenoids. The results highlight the importance of examining ontogenetic trajectories of defence traits when developing and testing theories of plant defence, and illustrate an advantage of concurrently studying multiple defences.


Assuntos
Eucalyptus/metabolismo , Fenóis/metabolismo , Terpenos/metabolismo , Eucalyptus/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plântula/metabolismo
10.
PLoS One ; 7(7): e40856, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22911712

RESUMO

We report the widespread occurrence of structurally diverse oleuropeyl glucose esters, including the new diester eucaglobulin B, localized specifically to the essential oil secretory cavities of myrtaceous species. Clear taxonomic patterns in the composition of cavity extracts within the genus Eucalyptus are shown with species from subgenus Symphyomyrtus dominated by oleuropeyl glucose esters and species from subgenus Eucalyptus dominated instead by the flavanone, pinocembrin. We also examined the intra-species occurrence of oleuropeyl glucose esters by quantifying the abundant constituents cuniloside B and froggattiside A in trees from two populations of Eucalyptus polybractea R.T. Baker. All trees contained both compounds, which were positively correlated with total essential oil concentration. This apparent ubiquity of oleuropeyl glucose esters at both intra- and inter-specific levels in Eucalyptus is indicative of important physiological or ecological functions. The significance of their prevalence and the sequestration of these esters and also pinocembrin to the extracellular domain of secretory cavities is discussed in light of their potential biological activities and our findings that they are spatially segregated to the exterior of cavity lumina. The localization of oleuropeyl glucose esters to a specific and isolatable tissue type has the potential to aid in future elucidation of function and biosynthesis.


Assuntos
Ácidos Cicloexanocarboxílicos/química , Flavanonas/química , Glucose/química , Myrtaceae/química , Ácidos Cicloexanocarboxílicos/metabolismo , Ésteres , Eucalyptus/química , Eucalyptus/metabolismo , Flavanonas/metabolismo , Glucose/metabolismo , Taninos Hidrolisáveis/química , Taninos Hidrolisáveis/metabolismo , Monoterpenos/química , Monoterpenos/metabolismo , Myrtaceae/metabolismo , Óleos Voláteis/química , Óleos Voláteis/metabolismo
11.
Plant Methods ; 6: 20, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20807444

RESUMO

BACKGROUND: The biosynthesis of plant natural products in sub-dermal secretory cavities is poorly understood at the molecular level, largely due to the difficulty of physically isolating these structures for study. Our aim was to develop a protocol for isolating live and intact sub-dermal secretory cavities, and to do this, we used leaves from three species of Eucalyptus with cavities that are relatively large and rich in essential oils. RESULTS: Leaves were digested using a variety of commercially available enzymes. A pectinase from Aspergillus niger was found to allow isolation of intact cavities after a relatively short incubation (12 h), with no visible artifacts from digestion and no loss of cellular integrity or cavity contents. Several measurements indicated the potential of the isolated cavities for further functional studies. First, the cavities were found to consume oxygen at a rate that is comparable to that estimated from leaf respiratory rates. Second, mRNA was extracted from cavities, and it was used to amplify a cDNA fragment with high similarity to that of a monoterpene synthase. Third, the contents of the cavity lumen were extracted, showing an unexpectedly low abundance of volatile essential oils and a sizeable amount of non-volatile material, which is contrary to the widely accepted role of secretory cavities as predominantly essential oil repositories. CONCLUSIONS: The protocol described herein is likely to be adaptable to a range of Eucalyptus species with sub-dermal secretory cavities, and should find wide application in studies of the developmental and functional biology of these structures, and the biosynthesis of the plant natural products they contain.

12.
Carbohydr Res ; 345(14): 2079-84, 2010 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-20708173

RESUMO

Short syntheses of cuniloside B and cypellocarpin C, (+)-(R)-oleuropeic acid-containing carbohydrates, are reported. Also disclosed are syntheses of the noreugenin glycosides, undulatoside A and corymbosins K(1) and K(2). Leaf extracts of 28 diverse eucalypts revealed cuniloside B to be present in all, and cypellocarpin C to be present in most, of the species examined. The widespread occurrence of these carbohydrate monoterpenoid esters supports their roles in essential oil biosynthesis or mobilization from sites of synthesis to secretory cavity lumena.


Assuntos
Ácidos Cicloexanocarboxílicos/síntese química , Eucalyptus/química , Glucosídeos/síntese química , Monoterpenos/síntese química , Óleos Voláteis/síntese química , Folhas de Planta/química
13.
Funct Plant Biol ; 35(3): 247-251, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-32688779

RESUMO

A protocol for the micropropagation of Eucalyptus polybractea R.T. Baker (blue mallee) using axillary bud proliferation from lignotuber-derived explants is described. Three different ages of plants were used as explant sources: glasshouse-grown seedlings, field-grown saplings, and coppice of field-grown mature lignotubers. Explants from each source initiated successfully and no significant difference was observed for shoot proliferation, rooting success or hardening success between explant sources. Leaf oil quantity and quality for hardened clones transplanted to a field plantation were assessed after 3 months of growth. Ramets of all clones contained high quality oil with over 80% 1,8-cineole. For seedling-derived clones, foliar oil concentrations of ramets were higher than those of the ortets from which they were derived. For sapling and mature lignotuber derived clones the opposite was the case. This suggests that ontogenetic and physiological constraints may be influencing yield in the young ramets. The age of the explant source did not appear to influence the success of micropropagation, and as a result older plants (for which key oil traits are known) can be selected as elite plants for multiplying selected genotypes via micropropagation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...