Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 412, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649380

RESUMO

Diploid wild oat Avena longiglumis has nutritional and adaptive traits which are valuable for common oat (A. sativa) breeding. The combination of Illumina, Nanopore and Hi-C data allowed us to assemble a high-quality chromosome-level genome of A. longiglumis (ALO), evidenced by contig N50 of 12.68 Mb with 99% BUSCO completeness for the assembly size of 3,960.97 Mb. A total of 40,845 protein-coding genes were annotated. The assembled genome was composed of 87.04% repetitive DNA sequences. Dotplots of the genome assembly (PI657387) with two published ALO genomes were compared to indicate the conservation of gene order and equal expansion of all syntenic blocks among three genome assemblies. Two recent whole-genome duplication events were characterized in genomes of diploid Avena species. These findings provide new knowledge for the genomic features of A. longiglumis, give information about the species diversity, and will accelerate the functional genomics and breeding studies in oat and related cereal crops.


Assuntos
Avena , Diploide , Genoma de Planta , Avena/genética , Cromossomos de Plantas
2.
BMC Plant Biol ; 23(1): 627, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38062402

RESUMO

BACKGROUND: The BOP (Bambusoideae, Oryzoideae, and Pooideae) clade of the Poaceae has a common ancestor, with similarities to the genomes of rice, Oryza sativa (2n = 24; genome size 389 Mb) and Brachypodium, Brachypodium distachyon (2n = 10; 271 Mb). We exploit chromosome-scale genome assemblies to show the nature of genomic expansion, structural variation, and chromosomal rearrangements from rice and Brachypodium, to diploids in the tribe Aveneae (e.g., Avena longiglumis, 2n = 2x = 14; 3,961 Mb assembled to 3,850 Mb in chromosomes). RESULTS: Most of the Avena chromosome arms show relatively uniform expansion over the 10-fold to 15-fold genome-size increase. Apart from non-coding sequence diversification and accumulation around the centromeres, blocks of genes are not interspersed with blocks of repeats, even in subterminal regions. As in the tribe Triticeae, blocks of conserved synteny are seen between the analyzed species with chromosome fusion, fission, and nesting (insertion) events showing deep evolutionary conservation of chromosome structure during genomic expansion. Unexpectedly, the terminal gene-rich chromosomal segments (representing about 50 Mb) show translocations between chromosomes during speciation, with homogenization of genome-specific repetitive elements within the tribe Aveneae. Newly-formed intergenomic translocations of similar extent are found in the hexaploid A. sativa. CONCLUSIONS: The study provides insight into evolutionary mechanisms and speciation in the BOP clade, which is valuable for measurement of biodiversity, development of a clade-wide pangenome, and exploitation of genomic diversity through breeding programs in Poaceae.


Assuntos
Brachypodium , Oryza , Oryza/genética , Brachypodium/genética , Avena/genética , Genoma de Planta/genética , Melhoramento Vegetal , Centrômero
3.
BMC Plant Biol ; 23(1): 218, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37098475

RESUMO

BACKGROUND: Avena longiglumis Durieu (2n = 2x = 14) is a wild relative of cultivated oat (Avena sativa, 2n = 6x = 42) with good agronomic and nutritional traits. The plant mitochondrial genome has a complex organization and carries genetic traits of value in exploiting genetic resources, not least male sterility alleles used to generate F1 hybrid seeds. Therefore, we aim to complement the chromosomal-level nuclear and chloroplast genome assemblies of A. longiglumis with the complete assembly of the mitochondrial genome (mitogenome) based on Illumina and ONT long reads, comparing its structure with Poaceae species. RESULTS: The complete mitochondrial genome of A. longiglumis can be represented by one master circular genome being 548,445 bp long with a GC content of 44.05%. It can be represented by linear or circular DNA molecules (isoforms or contigs), with multiple alternative configurations mediated by long (4,100-31,235 bp) and medium (144-792 bp) size repeats. Thirty-five unique protein-coding genes, three unique rRNA genes, and 11 unique tRNA genes are identified. The mitogenome is rich in duplications (up to 233 kb long) and multiple tandem or simple sequence repeats, together accounting for more than 42.5% of the total length. We identify homologous sequences between the mitochondrial, plastid and nuclear genomes, including the exchange of eight plastid-derived tRNA genes, and nuclear-derived retroelement fragments. At least 85% of the mitogenome is duplicated in the A. longiglumis nuclear genome. We identify 269 RNA editing sites in mitochondrial protein-coding genes including stop codons truncating ccmFC transcripts. CONCLUSIONS: Comparative analysis with Poaceae species reveals the dynamic and ongoing evolutionary changes in mitochondrial genome structure and gene content. The complete mitochondrial genome of A. longiglumis completes the last link of the oat reference genome and lays the foundation for oat breeding and exploiting the biodiversity in the genus.


Assuntos
Avena , Genoma Mitocondrial , Avena/genética , Diploide , Genoma Mitocondrial/genética , Melhoramento Vegetal , Genoma de Planta/genética , Filogenia
4.
BMC Plant Biol ; 20(1): 406, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32878602

RESUMO

BACKGROUND: Oat (Avena sativa L.) is a recognized health-food, and the contributions of its different candidate A-genome progenitor species remain inconclusive. Here, we report chloroplast genome sequences of eleven Avena species, to examine the plastome evolutionary dynamics and analyze phylogenetic relationships between oat and its congeneric wild related species. RESULTS: The chloroplast genomes of eleven Avena species (size range of 135,889-135,998 bp) share quadripartite structure, comprising of a large single copy (LSC; 80,014-80,132 bp), a small single copy (SSC; 12,575-12,679 bp) and a pair of inverted repeats (IRs; 21,603-21,614 bp). The plastomes contain 131 genes including 84 protein-coding genes, eight ribosomal RNAs and 39 transfer RNAs. The nucleotide sequence diversities (Pi values) range from 0.0036 (rps19) to 0.0093 (rpl32) for ten most polymorphic genes and from 0.0084 (psbH-petB) to 0.0240 (petG-trnW-CCA) for ten most polymorphic intergenic regions. Gene selective pressure analysis shows that all protein-coding genes have been under purifying selection. The adjacent position relationships between tandem repeats, insertions/deletions and single nucleotide polymorphisms support the evolutionary importance of tandem repeats in causing plastome mutations in Avena. Phylogenomic analyses, based on the complete plastome sequences and the LSC intermolecular recombination sequences, support the monophyly of Avena with two clades in the genus. CONCLUSIONS: Diversification of Avena plastomes is explained by the presence of highly diverse genes and intergenic regions, LSC intermolecular recombination, and the co-occurrence of tandem repeat and indels or single nucleotide polymorphisms. The study demonstrates that the A-genome diploid-polyploid lineage maintains two subclades derived from different maternal ancestors, with A. longiglumis as the first diverging species in clade I. These genome resources will be helpful in elucidating the chloroplast genome structure, understanding the evolutionary dynamics at genus Avena and family Poaceae levels, and are potentially useful to exploit plastome variation in making hybrids for plant breeding.


Assuntos
Avena/genética , Evolução Molecular , Genoma de Cloroplastos/genética , Genoma de Planta/genética , Filogenia , Polimorfismo Genético
5.
BMC Plant Biol ; 19(1): 226, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31146681

RESUMO

BACKGROUND: Repetitive DNA motifs - not coding genetic information and repeated millions to hundreds of times - make up the majority of many genomes. Here, we identify the nature, abundance and organization of all the repetitive DNA families in oats (Avena sativa, 2n = 6x = 42, AACCDD), a recognized health-food, and its wild relatives. RESULTS: Whole-genome sequencing followed by k-mer and RepeatExplorer graph-based clustering analyses enabled assessment of repetitive DNA composition in common oat and its wild relatives' genomes. Fluorescence in situ hybridization (FISH)-based karyotypes are developed to understand chromosome and repetitive sequence evolution of common oat. We show that some 200 repeated DNA motifs make up 70% of the Avena genome, with less than 20 families making up 20% of the total. Retroelements represent the major component, with Ty3/Gypsy elements representing more than 40% of all the DNA, nearly three times more abundant than Ty1/Copia elements. DNA transposons are about 5% of the total, while tandemly repeated, satellite DNA sequences fit into 55 families and represent about 2% of the genome. The Avena species are monophyletic, but both bioinformatic comparisons of repeats in the different genomes, and in situ hybridization to metaphase chromosomes from the hexaploid species, shows that some repeat families are specific to individual genomes, or the A and D genomes together. Notably, there are terminal regions of many chromosomes showing different repeat families from the rest of the chromosome, suggesting presence of translocations between the genomes. CONCLUSIONS: The relatively small number of repeat families shows there are evolutionary constraints on their nature and amplification, with mechanisms leading to homogenization, while repeat characterization is useful in providing genome markers and to assist with future assemblies of this large genome (c. 4100 Mb in the diploid). The frequency of inter-genomic translocations suggests optimum strategies to exploit genetic variation from diploid oats for improvement of the hexaploid may differ from those used widely in bread wheat.


Assuntos
Avena/genética , DNA de Plantas , Evolução Molecular , Sequências Repetitivas de Ácido Nucleico , Cromossomos de Plantas/genética , Diploide , Genoma de Planta/genética , Hibridização in Situ Fluorescente , Cariotipagem , Poliploidia , Sequenciamento Completo do Genoma
6.
J Hered ; 108(6): 650-657, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28821184

RESUMO

Physical mapping of repetitive DNA families in the karyotypes of fish is important to understand the organization and evolution of different orders, families, genera, or species. Fish in the genus Imparfinis show diverse karyotypes with various diploid numbers and ribosomal DNA (rDNA) locations. Here we isolated and characterized Tc1-mariner nucleotide sequences from Imparfinis schubarti, and mapped their locations together with 18S rDNA, 5S rDNA, and microsatellite probes in Imparfinis borodini and I. schubarti chromosomes. The physical mapping of Tc1/Mariner on chromosomes revealed dispersed signals in heterochromatin blocks with small accumulations in the terminal and interstitial regions of I. borodini and I. schubarti. Tc1/Mariner was coincident with rDNA chromosomes sites in both species, suggesting that this transposable element may have participated in the dispersion and evolution of these sequences in the fish genome. Our analysis suggests that different transposons and microsatellites have accumulated in the I. borodini and I. schubarti genomes and that the distribution patterns of these elements may be related to karyotype evolution within Imparfinis.


Assuntos
Peixes-Gato/genética , Elementos de DNA Transponíveis , DNA Ribossômico/genética , Repetições de Microssatélites , Animais , Brasil , Peixes-Gato/classificação , Mapeamento Cromossômico , Evolução Molecular , Feminino , Heterocromatina , Hibridização in Situ Fluorescente , Cariótipo , Masculino , RNA Ribossômico 18S/genética , RNA Ribossômico 5S/genética
7.
Plant Mol Biol ; 52(1): 69-79, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12825690

RESUMO

We isolated and characterized different classes of transposable DNA elements in oil palm (Elaeis guineensis) plants grown from seed, and plants regenerated from tissue culture that show mantling, an abnormality leading to flower abortion. Using PCR assays, reverse transcriptase fragments belonging to LINE-like and gypsy-like retroelements and transposase fragments of En/Spm transposons were cloned. Sequence analysis revealed the presence of a major family of LINEs in oil palm, with other diverged copies. Gypsy-like retrotransposons form a single homologous group, whereas En/Spm transposons are present in several diverged families. Southern analysis revealed their presence in low (LINEs) to medium (gypsy and En/Spm) copy numbers in oil palm, and in situ hybridization showed a limited number of distinct loci for each class of transposable element. No differences in the genomic organization of the different classes of transposable DNA elements between ortet palm (parent) and regenerated palm trees with mantled phenotype were detected, but different levels of sequence methylation were observed. During tissue culture, McrBC digestion revealed the genome-wide reduction in DNA methylation, which was restored to near-normal levels in regenerated trees. HPLC analysis showed that methylation levels were slightly lower in the regenerated trees compared to the ortet parent. The genomic organization of the transposable DNA elements in different oil palm species, accessions and individual regenerated trees was investigated revealing only minor differences. The results suggest that the mantled phenotype is not caused by major rearrangements of transposable elements but may relate to changes in the methylation pattern of other genomic components.


Assuntos
Arecaceae/genética , Metilação de DNA , Elementos de DNA Transponíveis/genética , Genoma de Planta , Retroelementos/genética , Sequência de Aminoácidos , Arecaceae/crescimento & desenvolvimento , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Técnicas de Cultura , DNA de Plantas/química , DNA de Plantas/genética , DNA de Plantas/metabolismo , Variação Genética , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , DNA Polimerase Dirigida por RNA/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Transposases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...