Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Neuropharmacology ; 253: 109948, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636728

RESUMO

Alcohol consumption is a widespread phenomenon throughout the world. However, how recreational alcohol use evolves into alcohol use disorder (AUD) remains poorly understood. The Smpd3 gene and its coded protein neutral sphingomyelinase (NSM) are associated with alcohol consumption in humans and alcohol-related behaviors in mice, suggesting a potential role in this transition. Using multiparametric magnetic resonance imaging, we characterized the role of NSM in acute and chronic effects of alcohol on brain anatomy and function in female mice. Chronic voluntary alcohol consumption (16 vol% for at least 6 days) affected brain anatomy in WT mice, reducing regional structure volume predominantly in cortical regions. Attenuated NSM activity prevented these anatomical changes. Functional MRI linked these anatomical adaptations to functional changes: Chronic alcohol consumption in mice significantly modulated resting state functional connectivity (RS FC) in response to an acute ethanol challenge (i.p. bolus of 2 g kg-1) in heterozygous NSM knockout (Fro), but not in WT mice. Acute ethanol administration in alcohol-naïve WT mice significantly decreased RS FC in cortical and brainstem regions, a key finding that was amplified in Fro mice. Regarding direct pharmacological effects, acute ethanol administration increased the regional cerebral blood volume (rCBV) in many brain areas. Here, chronic alcohol consumption otherwise attenuated the acute rCBV response in WT mice but enhanced it in Fro mice. Altogether, these findings suggest a differential role for NSM in acute and chronic functional brain responses to alcohol. Therefore, targeting NSM may be useful in the prevention or treatment of AUD.


Assuntos
Encéfalo , Etanol , Imageamento por Ressonância Magnética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esfingomielina Fosfodiesterase , Animais , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielina Fosfodiesterase/genética , Feminino , Encéfalo/efeitos dos fármacos , Etanol/farmacologia , Etanol/administração & dosagem , Camundongos , Consumo de Bebidas Alcoólicas , Depressores do Sistema Nervoso Central/farmacologia , Alcoolismo
2.
Front Neurol ; 15: 1355862, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529038

RESUMO

Introduction: Genetic Absence Epilepsy Rats from Strasbourg (GAERS) represent a model of genetic generalized epilepsy. The present longitudinal study in GAERS and age-matched non-epileptic controls (NEC) aimed to characterize the epileptic brain network using two functional measures, resting state-functional magnetic resonance imaging (rs-fMRI) and manganese-enhanced MRI (MEMRI) combined with morphometry, and to investigate potential brain network alterations, following long-term seizure activity. Methods: Repeated rs-fMRI measurements at 9.4 T between 3 and 8 months of age were combined with MEMRI at the final time point of the study. We used graph theory analysis to infer community structure and global and local network parameters from rs-fMRI data and compared them to brain region-wise manganese accumulation patterns and deformation-based morphometry (DBM). Results: Functional connectivity (FC) was generally higher in GAERS when compared to NEC. Global network parameters and community structure were similar in NEC and GAERS, suggesting efficiently functioning networks in both strains. No progressive FC changes were observed in epileptic animals. Network-based statistics (NBS) revealed stronger FC within the cortical community, including regions of association and sensorimotor cortex, and with basal ganglia and limbic regions in GAERS, irrespective of age. Higher manganese accumulation in GAERS than in NEC was observed at 8 months of age, consistent with higher overall rs-FC, particularly in sensorimotor cortex and association cortex regions. Functional measures showed less similarity in subcortical regions. Whole brain volumes of 8 months-old GAERS were higher when compared to age-matched NEC, and DBM revealed increased volumes of several association and sensorimotor cortex regions and of the thalamus. Discussion: rs-fMRI, MEMRI, and volumetric data collectively suggest the significance of cortical networks in GAERS, which correlates with an increased fronto-central connectivity in childhood absence epilepsy (CAE). Our findings also verify involvement of basal ganglia and limbic regions. Epilepsy-related network alterations are already present in juvenile animals. Consequently, this early condition seems to play a greater role in dynamic brain function than chronic absence seizures.

3.
Front Neurosci ; 17: 1215400, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638321

RESUMO

Objective: Functional magnetic resonance imaging (fMRI) visualizes brain structures at increasingly higher resolution and better signal-to-noise ratio (SNR) as field strength increases. Yet, mapping the blood oxygen level dependent (BOLD) response to distinct neuronal processes continues to be challenging. Here, we investigated the characteristics of 7 T-fMRI compared to 3 T-fMRI in the human brain beyond the effect of increased SNR and verified the benefits of 7 T-fMRI in the detection of tiny, highly specific modulations of functional connectivity in the resting state following a motor task. Methods: 18 healthy volunteers underwent two resting state and a stimulus driven measurement using a finger tapping motor task at 3 and 7 T, respectively. The SNR for each field strength was adjusted by targeted voxel size variation to minimize the effect of SNR on the field strength specific outcome. Spatial and temporal characteristics of resting state ICA, network graphs, and motor task related activated areas were compared. Finally, a graph theoretical approach was used to detect resting state modulation subsequent to a simple motor task. Results: Spatial extensions of resting state ICA and motor task related activated areas were consistent between field strengths, but temporal characteristics varied, indicating that 7 T achieved a higher functional specificity of the BOLD response than 3 T-fMRI. Following the motor task, only 7 T-fMRI enabled the detection of highly specific connectivity modulations representing an "offline replay" of previous motor activation. Modulated connections of the motor cortex were directly linked to brain regions associated with memory consolidation. Conclusion: These findings reveal how memory processing is initiated even after simple motor tasks, and that it begins earlier than previously shown. Thus, the superior capability of 7 T-fMRI to detect subtle functional dynamics promises to improve diagnostics and therapeutic assessment of neurological diseases.

4.
Front Netw Physiol ; 3: 1090502, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37496803

RESUMO

While it is well established that the isoform 2 of the hyperpolarization-activated cyclic nucleotide-gated cation channel (HCN2) plays an important role in the development and maintenance of pain, the role of the closely related HCN4 isoform in the processing of nociceptive signals is not known. HCN4 channels are highly expressed in the thalamus, a region important for stimulus transmission and information processing. We used a brain-specific HCN4-knockout mouse line (HCN4-KO) to explore the role of HCN4 channels in acute nociceptive processing using several behavioral tests as well as a multimodal magnetic resonance imaging (MRI) approach. Functional MRI (fMRI) brain responses were measured during acute peripheral thermal stimulation complemented by resting state (RS) before and after stimulation. The data were analyzed by conventional and graph-theoretical approaches. Finally, high-resolution anatomical brain data were acquired. HCN4-KO animals showed a central thermal, but not a mechanical hypersensitivity in behavioral experiments. The open field analysis showed no significant differences in motor readouts between HCN4-KO and controls but uncovered increased anxiety in the HCN4-KO mice. Thermal stimulus-driven fMRI (s-fMRI) data revealed increased response volumes and response amplitudes for HCN4-KO, most pronounced at lower stimulation temperatures in the subcortical input, the amygdala as well as in limbic/hippocampal regions, and in the cerebellum. These findings could be cross-validated by graph-theoretical analyses. Assessment of short-term RS before and after thermal stimulation revealed that stimulation-related modulations of the functional connectivity only occurred in control animals. This was consistent with the finding that the hippocampus was found to be smaller in HCN4-KO. In summary, the deletion of HCN4 channels impacts on processing of acute nociception, which is remarkably manifested as a thermal hypersensitive phenotype. This was mediated by the key regions hypothalamus, somatosensory cortex, cerebellum and the amygdala. As consequence, HCN4-KO mice were more anxious, and their brain-wide RS functional connectivity could not be modulated by thermal nociceptive stimulation.

5.
Fluids Barriers CNS ; 20(1): 43, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316849

RESUMO

BACKGROUND: Despite recent attention, pathways and mechanisms of fluid transposition in the brain are still a matter of intense discussion and driving forces underlying waste clearance in the brain remain elusive. Consensus exists that net solute transport is a prerequisite for efficient clearance. The individual impact of neuronal activity and cerebrospinal fluid (CSF) formation, which both vary with brain state and anesthesia, remain unclear. METHODS: To separate conditions with high and low neuronal activity and high and low CSF formation, different anesthetic regimens in naive rat were established, using Isoflurane (ISO), Medetomidine (MED), acetazolamide or combinations thereof. With dynamic contrast-enhanced MRI, after application of low molecular weight contrast agent (CA) Gadobutrol to cisterna magna, tracer distribution was monitored as surrogate for solute clearance. Simultaneous fiber-based Ca2+-recordings informed about the state of neuronal activity under different anesthetic regimen. T2-weighted MRI and diffusion-weighted MRI (DWI) provided size of subarachnoidal space and aqueductal flow as surrogates for CSF formation. Finally, a pathway and mechanism-independent two-compartment model was introduced to provide a measure of efficiency for solute clearance from the brain. RESULTS: Anatomical imaging, DWI and Ca2+-recordings confirmed that conditions with distinct levels of neuronal activity and CSF formation were achieved. A sleep-resembling condition, with reduced neuronal activity and enhanced CSF formation was achieved using ISO+MED and an awake-like condition with high neuronal activity using MED alone. CA distribution in the brain correlated with the rate of CSF formation. The cortical brain state had major influence on tracer diffusion. Under conditions with low neuronal activity, higher diffusivity suggested enlargement of extracellular space, facilitating a deeper permeation of solutes into brain parenchyma. Under conditions with high neuronal activity, diffusion of solutes into parenchyma was hindered and clearance along paravascular pathways facilitated. Exclusively based on the measured time signal curves, the two-compartment model provided net exchange ratios, which were significantly larger for the sleep-resembling condition than for the awake-like condition. CONCLUSIONS: Efficiency of solute clearance in brain changes with alterations in both state of neuronal activity and CSF formation. Our clearance pathway and mechanism agnostic kinetic model informs about net solute transport, solely based on the measured time signal curves. This rather simplifying approach largely accords with preclinical and clinical findings.


Assuntos
Anestesia , Encéfalo , Animais , Ratos , Encéfalo/diagnóstico por imagem , Ventrículos Cerebrais , Acetazolamida , Cisterna Magna , Meios de Contraste
6.
Angew Chem Int Ed Engl ; 62(30): e202304445, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37170832

RESUMO

We reported a new electrophilic amination of various primary, secondary and tertiary alkyl, benzylic, allylic zinc and magnesium organometallics with O-2,4,6-trimethylbenzoyl hydroxylamines (O-TBHAs) in 52-99 % yield. These O-TBHAs displayed an excellent long-term stability and were readily prepared from various highly functionalized secondary amines via a convenient 3 step procedure. The amination reactions showed remarkable chemoselectivity proceeding without any transition-metal catalyst and were usually complete after 1-3 h reaction time at 25 °C. Furthermore, this electrophilic amination also provided access to enantioenriched tertiary amines (up to 88 % ee) by using optically enriched secondary alkylmagnesium reagents of the type s-AlkylMgCH2 SiMe3 .

7.
Cereb Cortex ; 33(3): 844-864, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35296883

RESUMO

Alcohol use, abuse, and addiction, and resulting health hazards are highly sex-dependent with unknown mechanisms. Previously, strong links between the SMPD3 gene and its coded protein neutral sphingomyelinase 2 (NSM) and alcohol abuse, emotional behavior, and bone defects were discovered and multiple mechanisms were identified for females. Here we report strong sex-dimorphisms for central, but not for peripheral mechanisms of NSM action in mouse models. Reduced NSM activity resulted in enhanced alcohol consumption in males, but delayed conditioned rewarding effects. It enhanced the acute dopamine response to alcohol, but decreased monoaminergic systems adaptations to chronic alcohol. Reduced NSM activity increased depression- and anxiety-like behavior, but was not involved in alcohol use for the self-management of the emotional state. Constitutively reduced NSM activity impaired structural development in the brain and enhanced lipidomic sensitivity to chronic alcohol. While the central effects were mostly opposite to NSM function in females, similar roles in bone-mediated osteocalcin release and its effects on alcohol drinking and emotional behavior were observed. These findings support the view that the NSM and multiple downstream mechanism may be a source of the sex-differences in alcohol use and emotional behavior.


Assuntos
Emoções , Esfingomielina Fosfodiesterase , Masculino , Camundongos , Animais , Feminino , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Consumo de Bebidas Alcoólicas , Ansiedade/metabolismo , Encéfalo/metabolismo , Etanol
8.
Biol Psychiatry ; 92(9): 730-738, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36031441

RESUMO

BACKGROUND: The pattern of structural brain abnormalities in anorexia nervosa (AN) is still not well understood. While several studies report substantial deficits in gray matter volume and cortical thickness in acutely underweight patients, others find no differences, or even increases in patients compared with healthy control subjects. Recent weight regain before scanning may explain some of this heterogeneity. To clarify the extent, magnitude, and dependencies of gray matter changes in AN, we conducted a prospective, coordinated meta-analysis of multicenter neuroimaging data. METHODS: We analyzed T1-weighted structural magnetic resonance imaging scans assessed with standardized methods from 685 female patients with AN and 963 female healthy control subjects across 22 sites worldwide. In addition to a case-control comparison, we conducted a 3-group analysis comparing healthy control subjects with acutely underweight AN patients (n = 466) and partially weight-restored patients in treatment (n = 251). RESULTS: In AN, reductions in cortical thickness, subcortical volumes, and, to a lesser extent, cortical surface area were sizable (Cohen's d up to 0.95), widespread, and colocalized with hub regions. Highlighting the effects of undernutrition, these deficits were associated with lower body mass index in the AN sample and were less pronounced in partially weight-restored patients. CONCLUSIONS: The effect sizes observed for cortical thickness deficits in acute AN are the largest of any psychiatric disorder investigated in the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) Consortium to date. These results confirm the importance of considering weight loss and renutrition in biomedical research on AN and underscore the importance of treatment engagement to prevent potentially long-lasting structural brain changes in this population.


Assuntos
Anorexia Nervosa , Anorexia Nervosa/diagnóstico por imagem , Anorexia Nervosa/terapia , Encéfalo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Estudos Multicêntricos como Assunto , Estudos Prospectivos , Magreza
9.
Cell Rep ; 40(9): 111287, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36044840

RESUMO

The brains and minds of our human ancestors remain inaccessible for experimental exploration. Therefore, we reconstructed human cognitive evolution by projecting nonsynonymous/synonymous rate ratios (ω values) in mammalian phylogeny onto the anatomically modern human (AMH) brain. This atlas retraces human neurogenetic selection and allows imputation of ancestral evolution in task-related functional networks (FNs). Adaptive evolution (high ω values) is associated with excitatory neurons and synaptic function. It shifted from FNs for motor control in anthropoid ancestry (60-41 mya) to attention in ancient hominoids (26-19 mya) and hominids (19-7.4 mya). Selection in FNs for language emerged with an early hominin ancestor (7.4-1.7 mya) and was later accompanied by adaptive evolution in FNs for strategic thinking during recent (0.8 mya-present) speciation of AMHs. This pattern mirrors increasingly complex cognitive demands and suggests that co-selection for language alongside strategic thinking may have separated AMHs from their archaic Denisovan and Neanderthal relatives.


Assuntos
Hominidae , Homem de Neandertal , Animais , Arqueologia , Cognição/fisiologia , Evolução Molecular , Genoma Humano , Hominidae/genética , Humanos , Mamíferos , Homem de Neandertal/genética , Fenótipo
10.
Chem Commun (Camb) ; 58(63): 8774-8777, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35848786

RESUMO

We report the preparation of a new hydrocarbon-soluble magnesium amide TMP2Mg (TMP = 2,2,6,6-tetramethylpiperidyl). This base showed excellent properties for the regioselective magnesiation of various arenes and heteroarenes bearing ethyl esters and carbamates under very mild reaction conditions. Subsequent trapping with aryl iodides (Negishi cross-coupling) gave access to a range of highly functionalized valuable building blocks.

11.
Angew Chem Int Ed Engl ; 61(29): e202206176, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35575962

RESUMO

We report a convenient preparation of a new and storable magnesium amide (iPr2 N)2 Mg (magnesium-bis-diisopropylamide; MBDA) which proved to be especially suitable for the non-cryogenic magnesiation of fluoro-substituted arenes and heteroarenes providing arylmagnesium amides (ArMgDA) or bis-heteroaryl magnesiums (HetAr)2 Mg in hydrocarbons. Further reactions with electrophiles (aldehydes, ketones, allylic bromides, aryl halides (Negishi cross-coupling)) furnished a range of polyfunctional fluoro-substituted unsaturated building blocks. Several postfunctionalizations were described as well as NMR-studies confirming the dimeric structure of the base.

12.
PLoS One ; 17(4): e0266669, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35482725

RESUMO

Resiniferatoxin (RTX), an extract from the spurge plant Euphorbia resinifera, is a potent agonist of the transient receptor potential cation channel subfamily V member 1 (TRPV1), mainly expressed on peripheral nociceptors-a prerequisite for nociceptive heat perception. Systemic overdosing of RTX can be used to desensitize specifically TRPV1-expressing neurons, and was therefore utilized here to selectively characterize the influence of TRPV1-signaling on central nervous system (CNS) temperature processing. Resting state and CNS temperature processing of male rats were assessed via functional magnetic resonance imaging before and after RTX injection. General linear model-based and graph-theoretical network analyses disentangled the underlying distinct CNS circuitries. At baseline, rats displayed an increase of nociception-related response amplitude and activated brain volume that correlated highly with increasing stimulation temperatures. In contrast, RTX-treated rats showed a clear disruption of thermal nociception, reflected in a missing increase of CNS responses to temperatures above 48°C. Graph-theoretical analyses revealed two distinct brain subnetworks affected by RTX: one subcortical (brainstem, lateral and medial thalamus, hippocampus, basal ganglia and amygdala), and one cortical (primary sensory, motor and association cortices). Resting state analysis revealed first, that peripheral desensitization of TRPV1-expressing neurons did not disrupt the basic resting-state-network of the brain. Second, only at baseline, but not after RTX, noxious stimulation modulated the RS-network in regions associated with memory formation (e.g. hippocampus). Altogether, the combination of whole-brain functional magnetic resonance imaging and RTX-mediated desensitization of TRPV1-signaling provided further detailed insight into cerebral processing of noxious temperatures.


Assuntos
Diterpenos , Imageamento por Ressonância Magnética , Animais , Diterpenos/farmacologia , Masculino , Nociceptividade/fisiologia , Ratos , Canais de Cátion TRPV/agonistas
13.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36613952

RESUMO

Osteoporotic fractures are often linked to persisting chronic pain and poor healing outcomes. Substance P (SP), α-calcitonin gene-related peptide (α-CGRP) and sympathetic neurotransmitters are involved in bone remodeling after trauma and nociceptive processes, e.g., fracture-induced hyperalgesia. We aimed to link sensory and sympathetic signaling to fracture healing and fracture-induced hyperalgesia under osteoporotic conditions. Externally stabilized femoral fractures were set 28 days after OVX in wild type (WT), α-CGRP- deficient (α-CGRP -/-), SP-deficient (Tac1-/-) and sympathectomized (SYX) mice. Functional MRI (fMRI) was performed two days before and five and 21 days post fracture, followed by µCT and biomechanical tests. Sympathectomy affected structural bone properties in the fracture callus whereas loss of sensory neurotransmitters affected trabecular structures in contralateral, non-fractured bones. Biomechanical properties were mostly similar in all groups. Both nociceptive and resting-state (RS) fMRI revealed significant baseline differences in functional connectivity (FC) between WT and neurotransmitter-deficient mice. The fracture-induced hyperalgesia modulated central nociception and had robust impact on RS FC in all groups. The changes demonstrated in RS FC in fMRI might potentially be used as a bone traumata-induced biomarker regarding fracture healing under pathophysiological musculoskeletal conditions. The findings are of clinical importance and relevance as they advance our understanding of pain during osteoporotic fracture healing and provide a potential imaging biomarker for fracture-related hyperalgesia and its temporal development. Overall, this may help to reduce the development of chronic pain after fracture thereby improving the treatment of osteoporotic fractures.


Assuntos
Dor Crônica , Fraturas por Osteoporose , Animais , Feminino , Camundongos , Calo Ósseo , Peptídeo Relacionado com Gene de Calcitonina , Consolidação da Fratura/fisiologia , Hiperalgesia/etiologia , Fraturas por Osteoporose/diagnóstico por imagem , Ovariectomia , Sistema Nervoso Periférico
14.
Chemistry ; 28(6): e202103269, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-34704653

RESUMO

Mixed TMP-bases (TMP=2,2,6,6-tetramethylpiperidyl), such as TMPMgCl ⋅ LiCl, TMP2 Mg ⋅ 2LiCl, TMPZnCl ⋅ LiCl and TMP2 Zn ⋅ 2LiCl, are outstanding reagents for the metalation of functionalized aromatics and heterocycles. In the presence of Lewis acids, such as BF3 ⋅ OEt2 or MgCl2 , the metalation scope of such bases was dramatically increased, and regioselectivity switches were achieved in the presence or absence of these Lewis acids. Furthermore, highly reactive lithium bases, such as TMPLi or Cy2 NLi, are also compatible with various Lewis acids, such as MgCl2 ⋅ 2LiCl, ZnCl2 ⋅ 2LiCl or CuCN ⋅ 2LiCl. Performing such metalations in continuous flow using commercial setups permitted practical and convenient reaction conditions.

15.
Neuroimage ; 245: 118626, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34637903

RESUMO

For fMRI in animal models, the combination of low-dose anesthetic, isoflurane (ISO), and the sedative medetomidine (MED) has recently become an advocated regimen to achieve stable neuronal states and brain networks in rats that are required for reliable task-induced BOLD fMRI. However, in mice the temporal stability of neuronal states and networks in resting-state (rs)-fMRI experiments during the combined ISO/MED regimen has not been systematically investigated. Using a multimodal approach with optical calcium (Ca2+) recordings and rs-fMRI, we investigated cortical neuronal/astrocytic Ca2+activity states and brain networks at multiple time points while switching from anesthesia with 1% ISO to a combined ISO/MED regimen. We found that cortical activity states reached a steady-state 45 min following start of MED infusion as indicated by stable Ca2+ transients. Similarly, rs-networks were not statistically different between anesthesia with ISO and the combined ISO/MED regimen 45 and 100 min after start of MED. Importantly, during the transition time we identified changed rs-network signatures that likely reflect the different mode of action of the respective anesthetic; these included a dose-dependent increase in cortico-cortical functional connectivity (FC) presumably caused by reduction of ISO concentration and decreased FC in subcortical arousal nuclei due to MED infusion. Furthermore, we report detection of visual stimulation-induced BOLD fMRI during the stable ISO/MED neuronal state 45 min after induction. Based on our findings, we recommend a 45-minute waiting period after switching from ISO anesthesia to the combined ISO/MED regimen before performing rs- or task-induced fMRI experiments.


Assuntos
Anestésicos/farmacologia , Mapeamento Encefálico/métodos , Isoflurano/farmacologia , Imageamento por Ressonância Magnética/métodos , Medetomidina/farmacologia , Anestésicos/administração & dosagem , Animais , Isoflurano/administração & dosagem , Medetomidina/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais
16.
Mol Psychiatry ; 26(12): 7403-7416, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34584229

RESUMO

Mental disorders are highly comorbid and occur together with physical diseases, which are often considered to arise from separate pathogenic pathways. We observed in alcohol-dependent patients increased serum activity of neutral sphingomyelinase. A genetic association analysis in 456,693 volunteers found associations of haplotypes of SMPD3 coding for NSM-2 (NSM) with alcohol consumption, but also with affective state, and bone mineralisation. Functional analysis in mice showed that NSM controls alcohol consumption, affective behaviour, and their interaction by regulating hippocampal volume, cortical connectivity, and monoaminergic responses. Furthermore, NSM controlled bone-brain communication by enhancing osteocalcin signalling, which can independently supress alcohol consumption and reduce depressive behaviour. Altogether, we identified a single gene source for multiple pathways originating in the brain and bone, which interlink disorders of a mental-physical co-morbidity trias of alcohol abuse-depression/anxiety-bone disorder. Targeting NSM and osteocalcin signalling may, thus, provide a new systems approach in the treatment of a mental-physical co-morbidity trias.


Assuntos
Alcoolismo , Doenças Ósseas , Transtorno Depressivo Maior , Esfingomielina Fosfodiesterase , Alcoolismo/genética , Animais , Doenças Ósseas/genética , Comorbidade , Transtorno Depressivo Maior/genética , Humanos , Camundongos , Morbidade , Esfingomielina Fosfodiesterase/genética
17.
Chem Sci ; 12(24): 8424-8429, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34221323

RESUMO

Aryl azoles are ubiquitous as bioactive compounds and their regioselective functionalization is of utmost synthetic importance. Here, we report the development of a toluene-soluble dialkylmagnesium base sBu2Mg. This new reagent allows mild and regioselective ortho-magnesiations of various N-arylated pyrazoles and 1,2,3-triazoles as well as arenes bearing oxazoline, phosphorodiamidate or amide directing groups. The resulting diarylmagnesium reagents were further functionalized either by Pd-catalyzed arylation or by trapping reactions with a broad range of electrophiles (aldehydes, ketones, allylic halides, acyl chlorides, Weinreb amides, aryl halides, hydroxylamine benzoates, terminal alkynes). Furthermore, several double ortho,ortho'-magnesiations were realized in the case of aryl oxazolines, N-aryl pyrazoles as well as 2-aryl-2H-1,2,3-triazoles by simply repeating the magnesiation/electrophile trapping sequence allowing the preparation of valuable 1,2,3-functionalized arenes.

18.
Commun Biol ; 4(1): 732, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127787

RESUMO

The central amygdala (CE) emerges as a critical node for affective processing. However, how CE local circuitry interacts with brain wide affective states is yet uncharted. Using basic nociception as proxy, we find that gene expression suggests diverging roles of the two major CE neuronal populations, protein kinase C δ-expressing (PKCδ+) and somatostatin-expressing (SST+) cells. Optogenetic (o)fMRI demonstrates that PKCδ+/SST+ circuits engage specific separable functional subnetworks to modulate global brain dynamics by a differential bottom-up vs. top-down hierarchical mesoscale mechanism. This diverging modulation impacts on nocifensive behavior and may underly CE control of affective processing.


Assuntos
Afeto/fisiologia , Tonsila do Cerebelo/fisiologia , Rede Nervosa/fisiologia , Nociceptividade/fisiologia , Tonsila do Cerebelo/citologia , Animais , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Optogenética/métodos , Proteína Quinase C-delta/metabolismo , Proteína Quinase C-delta/fisiologia , Somatostatina/metabolismo , Somatostatina/fisiologia
19.
Brain Sci ; 11(5)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070079

RESUMO

Active avoidance learning is a complex form of aversive feedback learning that in humans and other animals is essential for actively coping with unpleasant, aversive, or dangerous situations. Since the functional circuits involved in two-way avoidance (TWA) learning have not yet been entirely identified, the aim of this study was to obtain an overall picture of the brain circuits that are involved in active avoidance learning. In order to obtain a longitudinal assessment of activation patterns in the brain of freely behaving rats during different stages of learning, we applied single-photon emission computed tomography (SPECT). We were able to identify distinct prefrontal cortical, sensory, and limbic circuits that were specifically recruited during the acquisition and retrieval phases of the two-way avoidance learning task.

20.
Chem Sci ; 12(17): 6011-6019, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33995997

RESUMO

Polyfunctional organometallics of magnesium and zinc are readily prepared from organic halides via a direct metal insertion in the presence of LiCl or a Br/Mg-exchange using iPrMgCl·LiCl (turbo-Grignard) or related reagents. Alternatively, such functionalized organometallics are prepared by metalations with TMP-bases (TMP = 2,2,6,6-tetramethylpiperidyl). The scope of these methods is described as well as applications in new Co- or Fe-catalyzed cross-couplings or aminations. It is shown that the use of a continous flow set-up considerably expands the field of applications of these methods and further allows the preparation of highly reactive organosodium reagents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...