Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 28(10): 4369-80, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25002117

RESUMO

Mitochondria, the major source of cellular energy in the form of ATP, respond to changes in substrate availability and bioenergetic demands by employing rapid, short-term, metabolic adaptation mechanisms, such as phosphorylation-dependent protein regulation. In mammalian cells, an intramitochondrial CO2-adenylyl cyclase (AC)-cyclic AMP (cAMP)-protein kinase A (PKA) pathway regulates aerobic energy production. One target of this pathway involves phosphorylation of cytochrome c oxidase (COX) subunit 4-isoform 1 (COX4i1), which modulates COX allosteric regulation by ATP. However, the role of the CO2-sAC-cAMP-PKA signalosome in regulating COX activity and mitochondrial metabolism and its evolutionary conservation remain to be fully established. We show that in Saccharomyces cerevisiae, normoxic COX activity measured in the presence of ATP is 55% lower than in the presence of ADP. Moreover, the adenylyl cyclase Cyr1 activity is present in mitochondria, and it contributes to the ATP-mediated regulation of COX through the normoxic subunit Cox5a, homologue of human COX4i1, in a bicarbonate-sensitive manner. Furthermore, we have identified 2 phosphorylation targets in Cox5a (T65 and S43) that modulate its allosteric regulation by ATP. These residues are not conserved in the Cox5b-containing hypoxic enzyme, which is not regulated by ATP. We conclude that across evolution, a CO2-sAC-cAMP-PKA axis regulates normoxic COX activity.


Assuntos
Hipóxia Celular , AMP Cíclico/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Dióxido de Carbono/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Proteínas Mitocondriais/genética , Mutação , Fosforilação , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
2.
J Biol Chem ; 288(46): 33283-91, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24100033

RESUMO

The second messenger molecule cAMP is integral for many physiological processes. In mammalian cells, cAMP can be generated from hormone- and G protein-regulated transmembrane adenylyl cyclases or via the widely expressed and structurally and biochemically distinct enzyme soluble adenylyl cyclase (sAC). sAC activity is uniquely stimulated by bicarbonate ions, and in cells, sAC functions as a physiological carbon dioxide, bicarbonate, and pH sensor. sAC activity is also stimulated by calcium, and its affinity for its substrate ATP suggests that it may be sensitive to physiologically relevant fluctuations in intracellular ATP. We demonstrate here that sAC can function as a cellular ATP sensor. In cells, sAC-generated cAMP reflects alterations in intracellular ATP that do not affect transmembrane AC-generated cAMP. In ß cells of the pancreas, glucose metabolism generates ATP, which corresponds to an increase in cAMP, and we show here that sAC is responsible for an ATP-dependent cAMP increase. Glucose metabolism also elicits insulin secretion, and we further show that sAC is necessary for normal glucose-stimulated insulin secretion in vitro and in vivo.


Assuntos
Adenilil Ciclases/metabolismo , Cálcio/metabolismo , Dióxido de Carbono/metabolismo , Carbonatos/metabolismo , Células Secretoras de Insulina/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Adenilil Ciclases/genética , Animais , AMP Cíclico/genética , AMP Cíclico/metabolismo , Glucose/genética , Glucose/metabolismo , Células HEK293 , Humanos , Insulina/genética , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/citologia , Camundongos , Camundongos Knockout
3.
PLoS One ; 7(6): e39769, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22761895

RESUMO

The most severe form of human malaria is caused by the parasite Plasmodium falciparum. The second messenger cAMP has been shown to be important for the parasite's ability to infect the host's liver, but its role during parasite growth inside erythrocytes, the stage responsible for symptomatic malaria, is less clear. The P. falciparum genome encodes two adenylyl cyclases, the enzymes that synthesize cAMP, PfACα and PfACß. We now show that one of these, PfACß, plays an important role during the erythrocytic stage of the P. falciparum life cycle. Biochemical characterization of PfACß revealed a marked pH dependence, and sensitivity to a number of small molecule inhibitors. These inhibitors kill parasites growing inside red blood cells. One particular inhibitor is selective for PfACß relative to its human ortholog, soluble adenylyl cyclase (sAC); thus, PfACß represents a potential target for development of safe and effective antimalarial therapeutics.


Assuntos
Adenilil Ciclases/metabolismo , Eritrócitos/parasitologia , Plasmodium falciparum/enzimologia , Adenilil Ciclases/genética , Animais , Sequência de Bases , Primers do DNA , Humanos , Plasmodium falciparum/genética
4.
J Pharmacol Exp Ther ; 338(3): 925-31, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21665942

RESUMO

In addition to increasing cGMP, the soluble guanylyl cyclase (sGC) activator 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) can elevate intracellular cAMP levels. This response was assumed to be as a result of cGMP-dependent inhibition of cAMP phosphodiesterases; however, in this study, we show that YC-1-induced cAMP production in the rat pancreatic beta cell line INS-1E occurs independent of its function as a sGC activator and independent of its ability to inhibit phosphodiesterases. This YC-1-induced cAMP increase is dependent upon soluble adenylyl cyclase and not on transmembrane adenylyl cyclase activity. We previously showed that soluble adenylyl cyclase-generated cAMP can lead to extracellular signal-regulated kinase activation and that YC-1-stimulated cAMP production also stimulates extracellular signal-regulated kinase. Although YC-1 has been used as a tool for investigating sGC and cGMP-mediated pathways, this study reveals cGMP-independent pharmacological actions of this compound.


Assuntos
AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Ativadores de Enzimas/farmacologia , Guanilato Ciclase/metabolismo , Indazóis/farmacologia , Células Secretoras de Insulina/metabolismo , Animais , Western Blotting , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Glucose/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Morfolinas/farmacologia , Oxidiazóis/farmacologia , Oxazinas/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Pirimidinas/farmacologia , Quinoxalinas/farmacologia , Ratos , Transcrição Gênica
5.
J Biol Chem ; 284(2): 784-91, 2009 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-19008230

RESUMO

Carbon dioxide is fundamental to the physiology of all organisms. There is considerable interest in the precise molecular mechanisms that organisms use to directly sense CO(2). Here we demonstrate that a mammalian recombinant G-protein-activated adenylyl cyclase and the related Rv1625c adenylyl cyclase of Mycobacterium tuberculosis are specifically stimulated by CO(2). Stimulation occurred at physiological concentrations of CO(2) through increased k(cat). CO(2) increased the affinity of enzyme for metal co-factor, but contact with metal was not necessary as CO(2) interacted directly with apoenzyme. CO(2) stimulated the activity of both G-protein-regulated adenylyl cyclases and Rv1625c in vivo. Activation of G-protein regulated adenylyl cyclases by CO(2) gave a corresponding increase in cAMP-response element-binding protein (CREB) phosphorylation. Comparison of the responses of the G-protein regulated adenylyl cyclases and the molecularly, and biochemically distinct mammalian soluble adenylyl cyclase revealed that whereas G-protein-regulated enzymes are responsive to CO(2), the soluble adenylyl cyclase is responsive to both CO(2) and bicarbonate ion. We have, thus, identified a signaling enzyme by which eukaryotes can directly detect and respond to fluctuating CO(2).


Assuntos
Adenilil Ciclases/metabolismo , Dióxido de Carbono/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Adenilil Ciclases/química , Adenilil Ciclases/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Dados de Sequência Molecular , Ratos , Alinhamento de Sequência
6.
J Biol Chem ; 281(25): 17253-17258, 2006 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-16627466

RESUMO

Nerve growth factor (NGF) and the ubiquitous second messenger cyclic AMP (cAMP) are both implicated in neuronal differentiation. Multiple studies indicate that NGF signals to at least a subset of its targets via cAMP, but the link between NGF and cAMP has remained elusive. Here, we have described the use of small molecule inhibitors to differentiate between the two known sources of cAMP in mammalian cells, bicarbonate- and calcium-responsive soluble adenylyl cyclase (sAC) and G protein-regulated transmembrane adenylyl cyclases. These inhibitors, along with sAC-specific small interfering RNA, reveal that sAC is uniquely responsible for the NGF-elicited rise in cAMP and is essential for the NGF-induced activation of the small G protein Rap1 in PC12 cells. In contrast and as expected, transmembrane adenylyl cyclase-generated cAMP is responsible for Rap1 activation by the G protein-coupled receptor ligand PACAP (pituitary adenylyl cyclase-activating peptide). These results identify sAC as a mediator of NGF signaling and reveal the existence of distinct pathways leading to cAMP-dependent signal transduction.


Assuntos
Adenilil Ciclases/fisiologia , Fator de Crescimento Neural/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Adenilil Ciclases/metabolismo , Animais , Cálcio/metabolismo , AMP Cíclico/metabolismo , Ativação Enzimática , Células PC12 , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Transdução de Sinais , Proteínas ras/metabolismo
7.
Dev Cell ; 9(2): 249-59, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16054031

RESUMO

Mammalian fertilization is dependent upon a series of bicarbonate-induced, cAMP-dependent processes sperm undergo as they "capacitate," i.e., acquire the ability to fertilize eggs. Male mice lacking the bicarbonate- and calcium-responsive soluble adenylyl cyclase (sAC), the predominant source of cAMP in male germ cells, are infertile, as the sperm are immotile. Membrane-permeable cAMP analogs are reported to rescue the motility defect, but we now show that these "rescued" null sperm were not hyperactive, displayed flagellar angulation, and remained unable to fertilize eggs in vitro. These deficits uncover a requirement for sAC during spermatogenesis and/or epididymal maturation and reveal limitations inherent in studying sAC function using knockout mice. To circumvent this restriction, we identified a specific sAC inhibitor that allowed temporal control over sAC activity. This inhibitor revealed that capacitation is defined by separable events: induction of protein tyrosine phosphorylation and motility are sAC dependent while acrosomal exocytosis is not dependent on sAC.


Assuntos
Adenilil Ciclases/metabolismo , Fertilização/fisiologia , Transdução de Sinais/fisiologia , Espermatozoides/fisiologia , Acrossomo/fisiologia , Inibidores de Adenilil Ciclases , Animais , AMP Cíclico/biossíntese , Exocitose , Fertilização/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Solubilidade , Capacitação Espermática/efeitos dos fármacos , Motilidade dos Espermatozoides , Espermatozoides/efeitos dos fármacos , Tirosina/metabolismo
8.
J Biol Chem ; 280(36): 31754-9, 2005 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-16002394

RESUMO

Catechol estrogens are steroid metabolites that elicit physiological responses through binding to a variety of cellular targets. We show here that catechol estrogens directly inhibit soluble adenylyl cyclases and the abundant trans-membrane adenylyl cyclases. Catechol estrogen inhibition is non-competitive with respect to the substrate ATP, and we solved the crystal structure of a catechol estrogen bound to a soluble adenylyl cyclase from Spirulina platensis in complex with a substrate analog. The catechol estrogen is bound to a newly identified, conserved hydrophobic patch near the active center but distinct from the ATP-binding cleft. Inhibitor binding leads to a chelating interaction between the catechol estrogen hydroxyl groups and the catalytic magnesium ion, distorting the active site and trapping the enzyme substrate complex in a non-productive conformation. This novel inhibition mechanism likely applies to other adenylyl cyclase inhibitors, and the identified ligand-binding site has important implications for the development of specific adenylyl cyclase inhibitors.


Assuntos
Inibidores de Adenilil Ciclases , Adenilil Ciclases/química , Cianobactérias/enzimologia , Inibidores Enzimáticos/química , Estrogênios de Catecol/química , Trifosfato de Adenosina/metabolismo , Adenilil Ciclases/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Inibidores Enzimáticos/metabolismo , Estrogênios de Catecol/metabolismo , Humanos , Estrutura Terciária de Proteína
9.
J Cell Biol ; 164(4): 527-34, 2004 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-14769862

RESUMO

Bicarbonate-responsive "soluble" adenylyl cyclase resides, in part, inside the mammalian cell nucleus where it stimulates the activity of nuclear protein kinase A to phosphorylate the cAMP response element binding protein (CREB). The existence of this complete and functional, nuclear-localized cAMP pathway establishes that cAMP signals in intracellular microdomains and identifies an alternate pathway leading to CREB activation.


Assuntos
Adenilil Ciclases/metabolismo , Bicarbonatos/metabolismo , Núcleo Celular/enzimologia , AMP Cíclico/metabolismo , Inibidores de Adenilil Ciclases , Animais , Linhagem Celular , Chlorocebus aethiops , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática , Regulação da Expressão Gênica , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Imuno-Histoquímica , Fosforilação , Ratos , Sistemas do Segundo Mensageiro/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...