Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 44(18): 6463-9, 2005 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-16124828

RESUMO

Synthetic exploration of K/Cu/Th/S quaternary phase space has yielded three new compounds: KCuThS3 (I), K2Cu2ThS4 (II), and K3Cu3Th2S7 (III). All three phases are semiconductors with optical band gaps of 2.95, 2.17, and 2.49 eV(I-III). Compound I crystallizes in the orthorhombic space group Cmcm with a = 4.076(1) A, b = 13.864(4) A, and c = 10.541(3) A. Compound II crystallizes in the monoclinic space group C2/m with a = 14.522(1) A, b = 4.026(3) A, and c = 7.566(6) A; beta = 109.949(1) degrees . Compound III crystallizes in orthorhombic space group Pbcn with a = 4.051(2) A, b = 14.023(8) A, and c = 24.633(13) A. The compounds are all layered materials, with each layer composed of threads of edge-sharing ThS6 octahedra bridged by CuS4 tetrahedral threads of varying dimension. The layers are separated by well-ordered potassium ions. The relatively wide range of optical band gaps is attributed to the extent of the CuS4 motifs. As the dimension of the CuS4 chains increases, band gaps decrease in the series. All materials were characterized by single-crystal X-ray diffraction, microprobe chemical analysis, and diffuse reflectance spectroscopy (NIR-UV).

2.
Inorg Chem ; 44(6): 2106-13, 2005 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-15762739

RESUMO

Two new thorium chalcophosphates have been synthesized by the reactive flux method and characterized by single-crystal X-ray diffraction, diffuse reflectance, and Raman spectroscopy: Cs4Th2P6S18 (I); Rb7Th2P6Se21 (II). Compound I crystallizes as colorless blocks in the triclinic space group P1 (No. 2) with a = 12.303(4) A, b = 12.471(4) A, c = 12.541(4) A, alpha = 114.607(8) degrees, beta = 102.547(6) degrees, gamma = 99.889(7) degrees, and Z = 2. The structure consists of (Th2P6S18)(4-) layers separated by layers of cesium cations and only contains the (P2S6)(4-) building block. Compound II crystallizes as red blocks in the triclinic space group P1 (No. 2) with a = 11.531(3) A, b = 12.359(4) A, c = 16.161(5) A, alpha = 87.289(6) degrees, beta = 75.903(6) degrees, gamma = 88.041(6) degrees, and Z = 2. The structure consists of linear chains of (Th2P6Se21)(7-) separated by rubidium cations. Compound II contains both the (PSe4)(3-) and (P2Se6)(4-) building blocks. Both structures may be derived from two known rare earth structures where a rare earth site is replaced by an alkali or actinide metal to form these novel structures. Optical band gap measurements show that compound I has a band gap of 2.8 eV and compound II has a band gap of 2.0 eV. Solid-state Raman spectroscopy of compound I shows the vibrations expected for the (P2S6)(4-) unit. Raman spectroscopy of compound II shows the vibrations expected for both (PSe4)(3-) and (P2Se6)(4-) units. Our work shows the remarkable diversity of the actinide chalcophosphate system and demonstrates the phase space is still ripe to discover new structures.

3.
J Am Chem Soc ; 126(41): 13443-58, 2004 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-15479101

RESUMO

Pu L(3) X-ray absorption fine structure spectra from 24 samples of PuO(2+x) (and two related Pu-substituted oxides), prepared by a variety of methods, demonstrate that (1) although the Pu sublattice remains the ordered part of the Pu distribution, the nearest-neighbor O atoms even at x = 0 are found in a multisite distribution with Pu-O distances consistent with the stable incorporation of OH(-) (and possibly H(2)O and H(+)) into the PuO(2) lattice; (2) the excess O from oxidation is found at Pu-O distances <1.9 A, consistent with the multiply bound "oxo"-type ligands found in molecular complexes of Pu(V) and Pu(VI); (3) the Pu associated with these oxo groups is most likely Pu(V), so that the excess O probably occurs as PuO(2)(+) moieties that are aperiodically distributed through the lattice; and (4) the collective interactions between these defect sites most likely cause them to cluster so as give nanoscale heterogeneity in the form of domains that may have unusual reactivity, observed as sequential oxidation by H(2)O at ambient conditions. The most accurate description of PuO(2) is therefore actually PuO(2+x-y)(OH)(2)(y).zH(2)O, with pure, ordered, homogeneous PuO(2) attained only when H(2)O is rigorously excluded and the O activity is relatively low.

4.
Inorg Chem ; 43(10): 3242-7, 2004 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-15132633

RESUMO

The utility of the solvothermal dehydration strategy whereby superheated acetonitrile reacts with water of hydration to form ammonium acetate is demonstrated in the synthesis of [NH(4)]MnCl(2)(OAc), I, and [NH(4)](2)MnCl(4)(H(2)O)(2), II, from MnCl(2).4H(2)O. The structure of I is shown to crystallize in the monoclinic space group C2/c (No. 15) with a = 15.191(6) A, b = 7.044(2) A, c = 13.603(6) A, beta = 107.31 degrees, V = 1389.7(9) cm(-)(1), and Z = 8. The structure of II crystallizes in the space group I4/mmm (No. 139) with a = 7.5250(5) A, b = 8.276(2) A, V = 468.6(1) cm(-)(1), and Z = 2. Both structures exhibit extensive hydrogen bonding that controls both local Mn-Cl bonding and the interchain organization. I is shown to be a one-dimensional Heisenberg antiferromagnet with an intrachain exchange constant J/k = -2.39 K. This structure exhibits exchange coupling intermediate between the well-studied triply and doubly chloride-bridged one-dimensional manganese Heisenberg antiferromagnets. The structure/property correlation demonstrates a linear dependence of the exchange constant on the Mn-Cl-Mn bond angle, alpha, for alpha < 94 degrees.

5.
Inorg Chem ; 43(1): 116-31, 2004 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-14704059

RESUMO

Pu L(3) X-ray near edge absorption spectra for Pu(0-VII) are reported for more than 60 chalcogenides, chlorides, hydrates, hydroxides, nitrates, carbonates, oxy-hydroxides, and other compounds both as solids and in solution, and substituted in zirconolite, perovskite, and borosilicate glass. This large database extends the known correlations between the energy and shape of these spectra from the usual association of the XANES with valence and site symmetry to higher order chemical effects. Because of the large number of compounds of these different types, a number of novel and unexpected behaviors are observed, such as effects resulting from the medium and disorder that can be as large as those from valence.

6.
J Am Chem Soc ; 124(7): 1327-33, 2002 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-11841302

RESUMO

The first quaternary plutonium metal thiophosphates have been synthesized by the reactive flux method and characterized by single-crystal X-ray diffraction: K(3)Pu(PS(4))(2) (I), KPuP(2)S(7) (II), RbPuP(2)S(7) (III), and CsPuP(2)S(7) (IV). All four compounds crystallize in the monoclinic space group P2(1)/c with Z = 4. Compound I has cell parameters of a = 9.157(1) A, b = 16.866(2) A, c = 9.538(1), and beta = 90.610(3)degrees. Compound II has cell parameters of a = 9.641(1) A, b = 12.255(1) A, c = 9.015(1) A, and beta = 90.218(1)degrees. Compound III has cell parameters of a = 9.8011(6) A, b = 12.3977(7) A, c = 9.0263(5) A, and beta = 90.564(1)degrees. Compound IV has cell parameters of a = 10.1034(7) A, b = 12.5412(9) A, c = 9.0306(6) A, and beta = 91.007(1)degrees. Compound I is isostructural to a family of rare-earth metal thiophosphates and comprises bicapped trigonal prismatic PuS(8) polyhedra linked in chains through edge-sharing interactions and through thiophosphate tetrahedra. Compounds II-IV crystallize in a known structure type not related to any previously observed actinide thiophosphates and contain the (P(2)S(7))(4-) corner-shared bitetrahedral ligand as a structural building block. A summary of important bond distances and angles for these new plutonium thiophosphate materials is compared to the limited literature on plutonium solid-state compounds. Diffuse reflectance spectra confirm the Pu(III) oxidation state and Raman spectroscopy confirms the tetrahedral PS(4)(3-) building block in all structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...