Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612041

RESUMO

Parts made through additive manufacturing (AM) often exhibit mechanical anisotropy due to the time-based deposition of material and processing parameters. In polymer material extrusion (MEX), printed parts have weak points at layer interfaces, perpendicular to the direction of deposition. Poly(lactic acid) with chopped carbon fiber was printed on a large-format pellet printer at various extrusion rates with the same tool pathing to measure the fiber alignment with deposition via two methods and relate it to the ultimate tensile strength (UTS). Within a singular printed bead, an X-ray microscopy (XRM) scan was conducted to produce a reconstruction of the internal microstructure and 3D object data on the length and orientation of fibers. From the scan, discrete images were used in an image analysis technique to determine the fiber alignment to deposition without 3D object data on each fiber's size. Both the object method and the discrete image method showed a negative relationship between the extrusion rate and fiber alignment, with -34.64% and -53.43% alignment per extrusion multiplier, respectively, as the slopes of the linear regression. Tensile testing was conducted to determine the correlation between the fiber alignment and UTS. For all extrusion rates tested, as the extrusion multiplier increased, the percent difference in the UTS decreased, to a minimum of 8.12 ± 14.40%. The use of image analysis for the determination of the fiber alignment provides a possible method for relating the microstructure to the meso-property of AM parts, and the relationship between the microstructure and the properties establishes process-structure-property relationships for large-format AM.

2.
Food Chem Toxicol ; 186: 114547, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408634

RESUMO

People are exposed to high concentrations of antibacterial agent cetylpyridinium chloride (CPC) via food and personal care products, despite little published information regarding CPC effects on eukaryotes. Here, we show that low-micromolar CPC exposure, which does not cause cell death, inhibits mitochondrial ATP production in primary human keratinocytes, mouse NIH-3T3 fibroblasts, and rat RBL-2H3 immune mast cells. ATP inhibition via CPC (EC50 1.7 µM) is nearly as potent as that caused by canonical mitotoxicant CCCP (EC50 1.2 µM). CPC inhibition of oxygen consumption rate (OCR) tracks with that of ATP: OCR is halved due to 1.75 µM CPC in RBL-2H3 cells and 1.25 µM in primary human keratinocytes. Mitochondrial [Ca2+] changes can cause mitochondrial dysfunction. Here we show that CPC causes mitochondrial Ca2+ efflux from mast cells via an ATP-inhibition mechanism. Using super-resolution microscopy (fluorescence photoactivation localization) in live cells, we have discovered that CPC causes mitochondrial nanostructural defects in live cells within 60 min, including the formation of spherical structures with donut-like cross section. This work reveals CPC as a mitotoxicant despite widespread use, highlighting the importance of further research into its toxicological safety.


Assuntos
Anti-Infecciosos Locais , Anti-Infecciosos , Camundongos , Humanos , Ratos , Animais , Cetilpiridínio/química , Cetilpiridínio/farmacologia , Roedores , Anti-Infecciosos/farmacologia , Mitocôndrias , Trifosfato de Adenosina
3.
Biomedicines ; 11(7)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37509580

RESUMO

Cell signaling is determined partially by the localization and abundance of proteins. Dystroglycan and integrin are both transmembrane receptors that connect the cytoskeleton inside muscle cells to the extracellular matrix outside muscle cells, maintaining proper adhesion and function of muscle. The position and abundance of Dystroglycan relative to integrins is thought to be important for muscle adhesion and function. The subcellular localization and quantification of these receptor proteins can be determined at the nanometer scale by FPALM super-resolution microscopy. We used FPALM to determine localizations of Dystroglycan and integrin proteins in muscle fibers of intact zebrafish (Danio rerio). Results were consistent with confocal imaging data, but illuminate further details at the nanoscale and show the feasibility of using FPALM to quantify interactions of two proteins in a whole organism.

4.
Viruses ; 14(12)2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36560603

RESUMO

The organization and dynamics of plasma membrane receptors are a critical link in virus-receptor interactions, which finetune signaling efficiency and determine cellular responses during infection. Characterizing the mechanisms responsible for the active rearrangement and clustering of receptors may aid in developing novel strategies for the therapeutic treatment of viruses. Virus-receptor interactions are poorly understood at the nanoscale, yet they present an attractive target for the design of drugs and for the illumination of viral infection and pathogenesis. This study utilizes super-resolution microscopy and related techniques, which surpass traditional microscopy resolution limitations, to provide both a spatial and temporal assessment of the interactions of human JC polyomavirus (JCPyV) with 5-hydroxytrypamine 2 receptors (5-HT2Rs) subtypes during viral entry. JCPyV causes asymptomatic kidney infection in the majority of the population and can cause fatal brain disease, and progressive multifocal leukoencephalopathy (PML), in immunocompromised individuals. Using Fluorescence Photoactivation Localization Microscopy (FPALM), the colocalization of JCPyV with 5-HT2 receptor subtypes (5-HT2A, 5-HT2B, and 5-HT2C) during viral attachment and viral entry was analyzed. JCPyV was found to significantly enhance the clustering of 5-HT2 receptors during entry. Cluster analysis of infected cells reveals changes in 5-HT2 receptor cluster attributes, and radial distribution function (RDF) analyses suggest a significant increase in the aggregation of JCPyV particles colocalized with 5-HT2 receptor clusters in JCPyV-infected samples. These findings provide novel insights into receptor patterning during viral entry and highlight improved technologies for the future development of therapies for JCPyV infection as well as therapies for diseases involving 5-HT2 receptors.


Assuntos
Vírus JC , Leucoencefalopatia Multifocal Progressiva , Infecções por Polyomavirus , Humanos , Vírus JC/fisiologia , Serotonina , Ligação Viral
5.
Cell Rep Med ; 3(11): 100820, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36384103

RESUMO

Ideal therapies for regenerative medicine or healthy aging require healthy organ growth and rejuvenation, but no organ-level approach is currently available. Using Mycobacterium leprae (ML) with natural partial cellular reprogramming capacity and its animal host nine-banded armadillos, we present an evolutionarily refined model of adult liver growth and regeneration. In infected armadillos, ML reprogram the entire liver and significantly increase total liver/body weight ratio by increasing healthy liver lobules, including hepatocyte proliferation and proportionate expansion of vasculature, and biliary systems. ML-infected livers are microarchitecturally and functionally normal without damage, fibrosis, or tumorigenesis. Bacteria-induced reprogramming reactivates liver progenitor/developmental/fetal genes and upregulates growth-, metabolism-, and anti-aging-associated markers with minimal change in senescence and tumorigenic genes, suggesting bacterial hijacking of homeostatic, regeneration pathways to promote de novo organogenesis. This may facilitate the unraveling of endogenous pathways that effectively and safely re-engage liver organ growth, with broad therapeutic implications including organ regeneration and rejuvenation.


Assuntos
Tatus , Reprogramação Celular , Animais , Fígado/metabolismo , Carcinogênese/metabolismo , Fibrose , Bactérias
6.
Viruses ; 14(11)2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36423118

RESUMO

The fully assembled influenza A virus (IAV) has on its surface the highest density of a single membrane protein found in nature-the glycoprotein hemagglutinin (HA) that mediates viral binding, entry, and assembly. HA clusters at the plasma membrane of infected cells, and the HA density (number of molecules per unit area) of these clusters correlates with the infectivity of the virus. Dense HA clusters are considered to mark the assembly site and ultimately lead to the budding of infectious IAV. The mechanism of spontaneous HA clustering, which occurs with or without other viral components, has not been elucidated. Using super-resolution fluorescence photoactivation localization microscopy (FPALM), we have previously shown that these HA clusters are interdependent on phosphatidylinositol 4,5-biphosphate (PIP2). Here, we show that the IAV matrix protein M1 co-clusters with PIP2, visualized using the pleckstrin homology domain. We find that cetylpyridinium chloride (CPC), which is a positively charged quaternary ammonium compound known for its antibacterial and antiviral properties at millimolar concentrations, disrupts M1 clustering and M1-PIP2 co-clustering at micromolar concentrations well below the critical micelle concentration (CMC). CPC also disrupts the co-clustering of M1 with HA at the plasma membrane, suggesting the role of host cell PIP2 clusters as scaffolds for gathering and concentrating M1 and HA to achieve their unusually high cluster densities in the IAV envelope.


Assuntos
Vírus da Influenza A , Influenza Humana , Humanos , Hemaglutininas/metabolismo , Fosfatidilinositóis/metabolismo , Influenza Humana/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Montagem de Vírus , Membrana Celular/metabolismo , Vírus da Influenza A/fisiologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-36051945

RESUMO

Localization microscopy circumvents the diffraction limit by identifying and measuring the positions of numerous subsets of individual fluorescent molecules, ultimately producing an image whose resolution depends on the uncertainty and density of localization, and whose capabilities are compatible with imaging living specimens. Spectral resolution can be improved by incorporating a dichroic or dispersive element in the detection path of a localization microscope, which can be useful for separation of multiple probes imaged simultaneously and for detection of changes in emission spectra of fluorophores resulting from changes in their environment. These methodological advances enable new biological applications, which in turn motivate new questions and technical innovations. As examples, we present fixed-cell imaging of the spike protein SARS-CoV2 (S) and its interactions with host cell components. Results show a relationship between S and the lipid phosphatidylinositol (4,5)-bisphosphate (PIP2). These findings have ramifications for several existing models of plasma membrane organization.

8.
Toxicol Appl Pharmacol ; 440: 115913, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35149080

RESUMO

The COVID-19 pandemic raises significance for a potential influenza therapeutic compound, cetylpyridinium chloride (CPC), which has been extensively used in personal care products as a positively-charged quaternary ammonium antibacterial agent. CPC is currently in clinical trials to assess its effects on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) morbidity. Two published studies have provided mouse and human data indicating that CPC may alleviate influenza infection, and here we show that CPC (0.1 µM, 1 h) reduces zebrafish mortality and viral load following influenza infection. However, CPC mechanisms of action upon viral-host cell interaction are currently unknown. We have utilized super-resolution fluorescence photoactivation localization microscopy to probe the mode of CPC action. Reduction in density of influenza viral protein hemagglutinin (HA) clusters is known to reduce influenza infectivity: here, we show that CPC (at non-cytotoxic doses, 5-10 µM) reduces HA density and number of HA molecules per cluster within the plasma membrane of NIH-3T3 mouse fibroblasts. HA is known to colocalize with the negatively-charged mammalian lipid phosphatidylinositol 4,5-bisphosphate (PIP2); here, we show that nanoscale co-localization of HA with the PIP2-binding Pleckstrin homology (PH) reporter in the plasma membrane is diminished by CPC. CPC also dramatically displaces the PIP2-binding protein myristoylated alanine-rich C-kinase substrate (MARCKS) from the plasma membrane of rat RBL-2H3 mast cells; this disruption of PIP2 is correlated with inhibition of mast cell degranulation. Together, these findings offer a PIP2-focused mechanism underlying CPC disruption of influenza and suggest potential pharmacological use of this drug as an influenza therapeutic to reduce global deaths from viral disease.


Assuntos
COVID-19 , Influenza Humana , Animais , Humanos , Camundongos , Ratos , Comunicação Celular , Cetilpiridínio/química , Cetilpiridínio/farmacologia , Imunidade , Mamíferos , Microscopia de Fluorescência , Pandemias , Fosfatidilinositóis , SARS-CoV-2 , Peixe-Zebra
9.
Toxicol Appl Pharmacol ; 405: 115205, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32835763

RESUMO

Triclosan (TCS) is an antimicrobial agent that was effectively banned by the FDA from hand soaps in 2016, hospital soaps in 2017, and hand sanitizers in 2019; however, TCS can still be found in a few products. At consumer-relevant, non-cytotoxic doses, TCS inhibits the functions of both mitochondria and mast cells, a ubiquitous cell type. Via the store-operated Ca2+ entry mechanism utilized by many immune cells, mast cells undergo antigen-stimulated Ca2+ influx into the cytosol, for proper function. Previous work showed that TCS inhibits Ca2+ dynamics in mast cells, and here we show that TCS also inhibits Ca2+ mobilization in human Jurkat T cells. However, the biochemical mechanism behind the Ca2+ dampening has yet to be elucidated. Three-dimensional super-resolution microscopy reveals that TCS induces mitochondrial swelling, in line with and extending the previous finding of TCS inhibition of mitochondrial membrane potential via its proton ionophoric activity. Inhibition of plasma membrane potential (PMP) by the canonical depolarizer gramicidin can inhibit mast cell function. However, use of the genetically encoded voltage indicators (GEVIs) ArcLight (pH-sensitive) and ASAP2 (pH-insensitive), indicates that TCS does not disrupt PMP. In conjunction with data from a plasma membrane-localized, pH-sensitive reporter, these results indicate that TCS, instead, induces cytosolic acidification in mast cells and T cells. Acidification of the cytosol likely inhibits Ca2+ influx by uncoupling the STIM1/ORAI1 interaction that is required for opening of plasma membrane Ca2+ channels. These results provide a mechanistic explanation of TCS disruption of Ca2+ influx and, thus, of immune cell function.


Assuntos
Anti-Infecciosos/toxicidade , Cálcio/metabolismo , Citoplasma/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Triclosan/toxicidade , Canais de Cálcio/metabolismo , Degranulação Celular/efeitos dos fármacos , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Citoplasma/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Mastócitos/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Dilatação Mitocondrial/efeitos dos fármacos , Linfócitos T/metabolismo
10.
Int J Mol Sci ; 21(7)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283864

RESUMO

The microenvironment of mesenchymal stem cells (MSCs) is responsible for the modulation in MSC commitment. Nanocomposites with an inorganic and an organic component have been investigated, and osteogenesis of MSCs has been attributed to inorganic phases such as calcium phosphate under several conditions. Here, electrospun meshes and two-dimensional films of poly(lactic-co-glycolic acid) (PLGA) or nanocomposites of PLGA and amorphous calcium phosphate nanoparticles (PLGA/aCaP) seeded with human adipose-derived stem cells (ASCs) were analyzed for the expression of selected marker genes. In a two-week in vitro experiment, osteogenic commitment was not found to be favored on PLGA/aCaP compared to pure PLGA. Analysis of the medium revealed a significant reduction of the Ca2+ concentration when incubated with PLGA/aCaP, caused by chemical precipitation of hydroxyapatite (HAp) on aCaP seeds of PLGA/aCaP. Upon offering a constant Ca2+ concentration, however, the previously observed anti-osteogenic effect was reversed: alkaline phosphatase, an early osteogenic marker gene, was upregulated on PLGA/aCaP compared to pristine PLGA. Hence, in addition to the cell-material interaction, the material-medium interaction was also important for the stem cell commitment here, affecting the cell-medium interaction. Complex in vitro models should therefore consider all factors, as coupled impacts might emerge.


Assuntos
Fosfatos de Cálcio , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Células-Tronco/citologia , Alicerces Teciduais , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Calcificação Fisiológica , Cálcio/metabolismo , Cálcio/farmacologia , Fosfatos de Cálcio/química , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Nanopartículas/química , Nanopartículas/ultraestrutura , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/ultraestrutura , Alicerces Teciduais/química , Transcriptoma
11.
Health Phys ; 118(6): 583-592, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32345907

RESUMO

In the current climate of increased global terrorism, the threat of a radiological incident is becoming more realistic than ever, and as such, the necessity of early-warning detection is paramount to national security. To assist with this need, we have investigated the detection of uncharged particle emissions from radiological sources using charged-coupled devices (CCDs), which are contained within a variety of products, including consumer cellphones and traffic cameras. Because the CCD is intrinsically sensitive to charge accumulation as a result of linear energy transfer by the incident particles, each event can be counted and quantified using video-image processing and an estimated energy band assessed by the properties of the pixels. In an effort to make this process applicable to the widest possible range of CCDs available, this experiment was conducted using low-quality CCDs contained within consumer-grade, budget web cameras. Within a Pu-Be neutron howitzer, particles were detected using several camera models: Gigaware X76, Z76 and Logitech C170, C270. Particle detection events were counted by post-processing with Matlab, and an efficiency for each CCD was determined relative to both a theoretical flux model and a calibrated He tube detector. The relative detection efficiencies for the cameras tested fell within the range 14-18% and showed a linear correlation between incident energy and pixel response.


Assuntos
Equipamentos e Provisões Elétricas , Traçadores Radioativos , Calibragem , Modelos Teóricos , Radiologia
12.
Microbiol Spectr ; 7(4)2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31322104

RESUMO

The mammalian nervous system is invaded by a number of intracellular bacterial pathogens which can establish and progress infection in susceptible individuals. Subsequent clinical manifestation is apparent with the impairment of the functional units of the nervous system, i.e., the neurons and the supporting glial cells that produce myelin sheaths around axons and provide trophic support to axons and neurons. Most of these neurotrophic bacteria display unique features, have coevolved with the functional sophistication of the nervous system cells, and have adapted remarkably to manipulate neural cell functions for their own advantage. Understanding how these bacterial pathogens establish intracellular adaptation by hijacking endogenous pathways in the nervous system, initiating myelin damage and axonal degeneration, and interfering with myelin maintenance provides new knowledge not only for developing strategies to combat neurodegenerative conditions induced by these pathogens but also for gaining novel insights into cellular and molecular pathways that regulate nervous system functions. Since the pathways hijacked by bacterial pathogens may also be associated with other neurodegenerative diseases, it is anticipated that detailing the mechanisms of bacterial manipulation of neural systems may shed light on common mechanisms, particularly of early disease events. This chapter details a classic example of neurodegeneration, that caused by Mycobacterium leprae, which primarily infects glial cells of the peripheral nervous system (Schwann cells), and how it targets and adapts intracellularly by reprogramming Schwann cells to stem cells/progenitor cells. We also discuss implications of this host cell reprogramming by leprosy bacilli as a model in a wider context.


Assuntos
Hanseníase/microbiologia , Mycobacterium leprae/fisiologia , Sistema Nervoso Periférico/microbiologia , Adaptação Fisiológica , Animais , Humanos , Mycobacterium leprae/genética , Mycobacterium leprae/isolamento & purificação , Células de Schwann/microbiologia
13.
Sci Rep ; 9(1): 10910, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358841

RESUMO

Surgery of the chest wall is potentially required to cover large defects after  removal of malignant tumours. Usually, inert and non-degradable Gore-Tex serves to replace the missing tissue. However, novel biodegradable materials combined with stem cells are available that stimulate the healing. Based on poly-lactic-co-glycolic acid and amorphous calcium phosphate nanoparticles (PLGA/aCaP) and pure PLGA, a dual layer biodegradable hybrid nanocomposite was generated. Mouse adipose-derived stem cells were cultered on electrospun disks (ASCs of C57BL/6), and biomechanical tests were performed. The cell-seeded scaffolds were engrafted in C57BL/LY5.1 mice to serve as a chest wall substitute. Cell invasion into the bi-layered material, extent of CD45+ cells, inflammatory response, neo-vascularization and ECM composition were determined at 1 and 2 months post-surgery, respectively. The bi-layered hybrid nanocomposite was stable after a 2-week in vitro culture, in contrast to PLGA/aCaP without a PLGA layer. There was a complete biointegration and good vascularization in vivo. The presence of ASCs attracted more CD45+ cells (hematopoietic origin) compared to cell-free scaffolds. Inflammatory reaction was similar for both groups (±ASCs) at 8 weeks. A bi-layered hybrid nanocomposite fabricated of electrospun PLGA/aCaP and a reinforcing layer of pristine PLGA is an ideal scaffold for chest wall reconstruction. It is stable and allows a proper host tissue integration. If ASCs are seeded, they attract more CD45+ cells, supporting the regeneration process.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Nanocompostos/uso terapêutico , Parede Torácica/transplante , Alicerces Teciduais , Transplantes/transplante , Animais , Fosfatos de Cálcio/uso terapêutico , Diferenciação Celular , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/uso terapêutico , Engenharia Tecidual , Cicatrização
14.
Biophys J ; 116(5): 893-909, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30773293

RESUMO

The lipid phosphatidylinositol 4,5-bisphosphate (PIP2) forms nanoscopic clusters in cell plasma membranes; however, the processes determining PIP2 mobility and thus its spatial patterns are not fully understood. Using super-resolution imaging of living cells, we find that PIP2 is tightly colocalized with and modulated by overexpression of the influenza viral protein hemagglutinin (HA). Within and near clusters, HA and PIP2 follow a similar spatial dependence, which can be described by an HA-dependent potential gradient; PIP2 molecules move as if they are attracted to the center of clusters by a radial force of 0.079 ± 0.002 pN in HAb2 cells. The measured clustering and dynamics of PIP2 are inconsistent with the unmodified forms of the raft, tether, and fence models. Rather, we found that the spatial PIP2 distributions and how they change in time are explained via a novel, to our knowledge, dynamic mechanism: a radial gradient of PIP2 binding sites that are themselves mobile. This model may be useful for understanding other biological membrane domains whose distributions display gradients in density while maintaining their mobility.


Assuntos
Membrana Celular/química , Membrana Celular/metabolismo , Corantes Fluorescentes/metabolismo , Hemaglutininas Virais/metabolismo , Orthomyxoviridae , Fosfatidilinositol 4,5-Difosfato/metabolismo , Animais , Sobrevivência Celular , Camundongos , Modelos Biológicos , Células NIH 3T3
15.
Isci Notes ; 42019.
Artigo em Inglês | MEDLINE | ID: mdl-35402751

RESUMO

Mitochondrial membrane organization is important for many biological functions, and is implicated in a number of diseases, but conventional microscopy has insufficient resolution to image biologically relevant structures. We present methods to quantify nanoscale membrane curvature using three-dimensional localization-based super-resolution microscopy. Localizations are analyzed using a cluster algorithm followed by principal component analysis to determine local membrane curvature. Results are shown for mitochondria in C2C12 mouse myotubes labeled with Tom20-Dendra2.

16.
J Biomed Mater Res B Appl Biomater ; 107(6): 1833-1843, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30461201

RESUMO

Tissue engineering of an osteochondral interface demands for a gradual transition of chondrocyte- to osteoblast-prevailing tissue. If stem cells are used as a single cell source, an appropriate cue to trigger the desired differentiation is the use of composite materials with different amounts of calcium phosphate. Electrospun meshes of poly-lactic-co-glycolic acid and amorphous calcium phosphate nanoparticles (PLGA/aCaP) in weight ratios of 100:0; 90:10, 80:20, and 70:30 were seeded with human adipose-derived stem cells (ASCs) and cultured in DMEM without chemical supplementation. After 2 weeks of static cultivation, they were either further cultivated statically for another 2 weeks (group 1), or placed in a Bose® bioreactor with a flow rate per area of 0.16 mL cm-2 min-1 (group 2). Markers for stem cell criteria, chondrogenesis, osteogenesis, adipogenesis and angiogenesis were analyzed by quantitative real-time PCR. Cell distribution, Sox9 protein expression and proteoglycans were assessed by histology. In group 2 (perfusion culture), chondrogenic Sox9 was upregulated toward the cartilage-mimicking side compared to pure PLGA. On the bone-mimicking side, Sox9 experienced a downregulation, which was confirmed on the protein level. Vice versa, expression of osteocalcin was upregulated on the bone-mimicking side, while it was unchanged on the cartilage-mimicking side. In group 1 (static culture), CD31 was upregulated in the presence of aCaP compared to pure PLGA, whereas Sox9 and osteocalcin expression were not affected. aCaP nanoparticles incorporated in electrospun PLGA drive the differentiation behavior of human ASCs in a dose-dependent manner. Discrete gradients of aCaP may act as promising osteochondral interfaces. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1833-1843, 2019.


Assuntos
Tecido Adiposo , Osso e Ossos , Cartilagem , Diferenciação Celular , Células-Tronco , Engenharia Tecidual , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Cartilagem/citologia , Cartilagem/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Humanos , Perfusão , Células-Tronco/citologia , Células-Tronco/metabolismo
17.
Toxicol Appl Pharmacol ; 349: 39-54, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29630968

RESUMO

The antimicrobial agent triclosan (TCS) is used in products such as toothpaste and surgical soaps and is readily absorbed into oral mucosa and human skin. These and many other tissues contain mast cells, which are involved in numerous physiologies and diseases. Mast cells release chemical mediators through a process termed degranulation, which is inhibited by TCS. Investigation into the underlying mechanisms led to the finding that TCS is a mitochondrial uncoupler at non-cytotoxic, low-micromolar doses in several cell types and live zebrafish. Our aim was to determine the mechanisms underlying TCS disruption of mitochondrial function and of mast cell signaling. We combined super-resolution (fluorescence photoactivation localization) microscopy and multiple fluorescence-based assays to detail triclosan's effects in living mast cells, fibroblasts, and primary human keratinocytes. TCS disrupts mitochondrial nanostructure, causing mitochondria to undergo fission and to form a toroidal, "donut" shape. TCS increases reactive oxygen species production, decreases mitochondrial membrane potential, and disrupts ER and mitochondrial Ca2+ levels, processes that cause mitochondrial fission. TCS is 60 × more potent than the banned uncoupler 2,4-dinitrophenol. TCS inhibits mast cell degranulation by decreasing mitochondrial membrane potential, disrupting microtubule polymerization, and inhibiting mitochondrial translocation, which reduces Ca2+ influx into the cell. Our findings provide mechanisms for both triclosan's inhibition of mast cell signaling and its universal disruption of mitochondria. These mechanisms provide partial explanations for triclosan's adverse effects on human reproduction, immunology, and development. This study is the first to utilize super-resolution microscopy in the field of toxicology.


Assuntos
Anti-Infecciosos Locais/toxicidade , Sinalização do Cálcio/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Triclosan/toxicidade , Células 3T3 , Animais , Degranulação Celular/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Microtúbulos/efeitos dos fármacos , Microtúbulos/ultraestrutura , Cultura Primária de Células , Espécies Reativas de Oxigênio/metabolismo
18.
J Mech Behav Biomed Mater ; 83: 84-93, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29684776

RESUMO

OBJECTIVE: Chemical supplementation of culture media to induce differentiation of adult stem cells seeded on a scaffold may mask other differentiation triggers such as scaffold stiffness, chemical composition or mechanical stimulation. However, stem cells can be differentiated towards osteoblasts without any supplementation given an appropriate osteogenic scaffold and an adequate mechanical stimulation. MATERIALS AND METHODS: Electrospun meshes of poly-lactic-co-glycolic acid and amorphous calcium phosphate nanoparticles (PLGA/aCaP) in a weight ratio of 60:40 were seeded with human adipose-derived stem cells (ASCs) and cultured in DMEM. After two weeks of static cultivation, they were either further cultivated statically for another two weeks (group 1), or placed in a Bose® bioreactor with a flow rate per area of 0.16 mL cm-2 min1 (group 2). Furthermore, group 3 was also cultivated under perfusion, however, with an additional uniaxial cyclic compression. Stiffness of the scaffolds was assessed as a function of time. After a total of four weeks, minimum stem cell criteria markers as well as typical markers for osteogenesis, endothelial cell differentiation, adipogenesis and chondrogenesis were analyzed by quantitative real-time PCR, cell distribution within the scaffolds by histology and protein expression by immunohistochemistry. RESULTS: Dynamic conditions (perfusion ±â€¯uniaxial cyclic compression) significantly upregulated gene and protein expression of PPAR-γ-2 compared to static cultivation, while osteogenic markers were slightly downregulated. However, the compression in the perfusion bioreactor favored osteogenesis compared to mere perfusion as indicated by upregulation of ALP, Runx2 and collagen I. This behavior was not only attributed to the compressive load, but also to the significant increase in stiffness of the scaffold. Furthermore, CD105 was significantly upregulated under compression. CONCLUSIONS: Although an osteogenic electrospun composite material with an organic (PLGA) and an inorganic phase (aCaP nanoparticles) was used as scaffold, the dynamic cultivation as realized by either perfusion alone or an additional compression did not upregulate typical osteogenic genes when compared to static cultivation. In contrast, there was a significant upregulation of the adipogenic gene PPAR-γ-2. However, this anti-osteogenic starting point evoked by mere perfusion was partially reversed by an additional compression. Our findings exemplify that bone tissue engineering using adult stem cells should consider any other differentiations that may be triggered and overwhelm the desired differentiation, although experimental conditions theoretically provide cues to achieve it - like an osteogenic scaffold and mechanical stimulation.


Assuntos
Materiais Biomiméticos/farmacologia , Nanocompostos/química , Osteogênese/efeitos dos fármacos , Resistência ao Cisalhamento , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Estresse Mecânico , Adipogenia/efeitos dos fármacos , Fenômenos Biomecânicos , Materiais Biomiméticos/química , Fosfatos de Cálcio/química , Condrogênese/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Células-Tronco/metabolismo
19.
Langmuir ; 34(1): 30-35, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29215894

RESUMO

Monodisperse, nitrogen-doped hollow carbon spheres of submicron size were synthesized using hexamethoxymethylmelamine as both a carbon and nitrogen source in a short (1 h) microwave-assisted synthesis. After carbonization at 550 °C, porous carbon spheres with a remarkably high nitrogen content of 37.1% were obtained, which consisting mainly of highly basic pyridinic moieties. The synthesized hollow spheres exhibited high selectivity for carbon dioxide (CO2) over nitrogen and oxygen gases, with a capture capacity up to 1.56 mmol CO2 g-1. The low adsorption enthalpy of the synthesized hollow carbon spheres permits good adsorbent regeneration. Evaluation of the feasibility of scaling up shows their potential for large-scale applications.

20.
Biophys J ; 113(9): 2037-2054, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29117527

RESUMO

Fluorescent proteins are used extensively for biological imaging applications; photoactivatable and photoconvertible fluorescent proteins (PAFPs) are used widely in superresolution localization microscopy methods such as fluorescence photoactivation localization microscopy and photoactivated localization microscopy. However, their optimal use depends on knowledge of not only their bulk fluorescence properties, but also their photophysical properties at the single molecule level. We have used fluorescence correlation spectroscopy and cross-correlation spectroscopy to quantify the diffusion, photobleaching, fluorescence intermittency, and photoconversion dynamics of Dendra2, a well-known PAFP used in localization microscopy. Numerous dark states of Dendra2 are observed both in inactive (green fluorescent) and active (orange fluorescent) forms; the interconversion rates are both light- and pH-dependent, as observed for other PAFPs. The dark states limit the detected count rate per molecule, which is a crucial parameter for localization microscopy. We then developed, to our knowledge, a new mathematical estimate for the resolution in localization microscopy as a function of the measured photophysical parameters of the probe such as photobleaching quantum yield, count rate per molecule, and intensity of saturation. The model was used to predict the dependence of resolution on acquisition parameters such as illumination intensity and time per frame, demonstrating an optimal set of acquisition parameters for a given probe for a variety of measures of resolution. The best possible resolution was then compared for Dendra2 and other widely used probes, including Alexa dyes and quantum dots. This work establishes a framework for determination of the best possible resolution using a localization microscope to image a particular fluorophore, and suggests that development of probes for use in superresolution localization microscopy must consider the count rate per molecule, the saturation intensity, the photobleaching yield, and, crucially, management of bright/dark state transitions, to optimize image resolution.


Assuntos
Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Luz , Proteínas Luminescentes/química , Fotodegradação , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...