Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(37): eabo7639, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36112685

RESUMO

To maintain homeostasis, the body, including the brain, reprograms its metabolism in response to altered nutrition or disease. However, the consequences of these challenges for the energy metabolism of the different brain cell types remain unknown. Here, we generated a proteome atlas of the major central nervous system (CNS) cell types from young and adult mice, after feeding the therapeutically relevant low-carbohydrate, high-fat ketogenic diet (KD) and during neuroinflammation. Under steady-state conditions, CNS cell types prefer distinct modes of energy metabolism. Unexpectedly, the comparison with KD revealed distinct cell type-specific strategies to manage the altered availability of energy metabolites. Astrocytes and neurons but not oligodendrocytes demonstrated metabolic plasticity. Moreover, inflammatory demyelinating disease changed the neuronal metabolic signature in a similar direction as KD. Together, these findings highlight the importance of the metabolic cross-talk between CNS cells and between the periphery and the brain to manage altered nutrition and neurological disease.


Assuntos
Encéfalo , Dieta Cetogênica , Animais , Encéfalo/metabolismo , Carboidratos , Corpos Cetônicos/metabolismo , Camundongos , Proteoma/metabolismo
2.
Front Cell Dev Biol ; 9: 640169, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33898427

RESUMO

The velocity of nerve conduction along vertebrate axons depends on their ensheathment with myelin. Myelin membranes comprise specialized proteins well characterized in mice. Much less is known about the protein composition of myelin in non-mammalian species. Here, we assess the proteome of myelin biochemically purified from the brains of adult zebrafish (Danio rerio), considering its increasing popularity as model organism for myelin biology. Combining gel-based and gel-free proteomic approaches, we identified > 1,000 proteins in purified zebrafish myelin, including all known constituents. By mass spectrometric quantification, the predominant Ig-CAM myelin protein zero (MPZ/P0), myelin basic protein (MBP), and the short-chain dehydrogenase 36K constitute 12%, 8%, and 6% of the total myelin protein, respectively. Comparison with previously established mRNA-abundance profiles shows that expression of many myelin-related transcripts coincides with the maturation of zebrafish oligodendrocytes. Zebrafish myelin comprises several proteins that are not present in mice, including 36K, CLDNK, and ZWI. However, a surprisingly large number of ortholog proteins is present in myelin of both species, indicating partial evolutionary preservation of its constituents. Yet, the relative abundance of CNS myelin proteins can differ markedly as exemplified by the complement inhibitor CD59 that constitutes 5% of the total zebrafish myelin protein but is a low-abundant myelin component in mice. Using novel transgenic reporter constructs and cryo-immuno electron microscopy, we confirm the incorporation of CD59 into myelin sheaths. These data provide the first proteome resource of zebrafish CNS myelin and demonstrate both similarities and heterogeneity of myelin composition between teleost fish and rodents.

3.
Front Cell Neurosci ; 14: 239, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973451

RESUMO

Myelin membranes are dominated by lipids while the complexity of their protein composition has long been considered to be low. However, numerous additional myelin proteins have been identified since. Here we revisit the proteome of myelin biochemically purified from the brains of healthy c56Bl/6N-mice utilizing complementary proteomic approaches for deep qualitative and quantitative coverage. By gel-free, label-free mass spectrometry, the most abundant myelin proteins PLP, MBP, CNP, and MOG constitute 38, 30, 5, and 1% of the total myelin protein, respectively. The relative abundance of myelin proteins displays a dynamic range of over four orders of magnitude, implying that PLP and MBP have overshadowed less abundant myelin constituents in initial gel-based approaches. By comparisons with published datasets we evaluate to which degree the CNS myelin proteome correlates with the mRNA and protein abundance profiles of myelin and oligodendrocytes. Notably, the myelin proteome displays only minor changes if assessed after a post-mortem delay of 6 h. These data provide the most comprehensive proteome resource of CNS myelin so far and a basis for addressing proteomic heterogeneity of myelin in mouse models and human patients with white matter disorders.

4.
Elife ; 92020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32130108

RESUMO

Proteome and transcriptome analyses aim at comprehending the molecular profiles of the brain, its cell-types and subcellular compartments including myelin. Despite the relevance of the peripheral nervous system for normal sensory and motor capabilities, analogous approaches to peripheral nerves and peripheral myelin have fallen behind evolving technical standards. Here we assess the peripheral myelin proteome by gel-free, label-free mass-spectrometry for deep quantitative coverage. Integration with RNA-Sequencing-based developmental mRNA-abundance profiles and neuropathy disease genes illustrates the utility of this resource. Notably, the periaxin-deficient mouse model of the neuropathy Charcot-Marie-Tooth 4F displays a highly pathological myelin proteome profile, exemplified by the discovery of reduced levels of the monocarboxylate transporter MCT1/SLC16A1 as a novel facet of the neuropathology. This work provides the most comprehensive proteome resource thus far to approach development, function and pathology of peripheral myelin, and a straightforward, accurate and sensitive workflow to address myelin diversity in health and disease.


Assuntos
Proteínas de Membrana/metabolismo , Miopatias Mitocondriais/metabolismo , Proteínas da Mielina/metabolismo , Bainha de Mielina/metabolismo , Nervos Periféricos/patologia , Retinose Pigmentar/metabolismo , Animais , Doenças Desmielinizantes/patologia , Regulação da Expressão Gênica , Genótipo , Proteínas de Membrana/genética , Camundongos , Proteínas da Mielina/genética , Bainha de Mielina/química , Proteoma , Transcriptoma
5.
Methods Mol Biol ; 1936: 37-63, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30820892

RESUMO

Molecular characterization of myelin is a prerequisite for understanding the normal structure of the axon/myelin-unit in the healthy nervous system and abnormalities in myelin-related disorders. However, reliable molecular profiles necessitate very pure myelin membranes, in particular when considering the power of highly sensitive "omics"-data acquisition methods. Here, we recapitulate the history and recent applications of myelin purification. We then provide our laboratory protocols for the biochemical isolation of a highly pure myelin-enriched fraction from mouse brains and for its proteomic analysis. We also supply methodological modifications when investigating posttranslational modifications, RNA, or myelin from peripheral nerves. Notably, technical advancements in solubilizing myelin are beneficial for gel-based and gel-free myelin proteome analyses. We conclude this article by exemplifying the exceptional power of label-free proteomics in the mass-spectrometric quantification of myelin proteins.


Assuntos
Proteínas da Mielina/metabolismo , Proteômica/métodos , Animais , Centrifugação com Gradiente de Concentração , Espectrometria de Massas , Camundongos , Processamento de Proteína Pós-Traducional
6.
Mol Med ; 21(1): 803-815, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26349059

RESUMO

Erythropoietin (EPO) exerts potent neuroprotective, neuroregenerative and procognitive functions. However, unequivocal demonstration of erythropoietin receptor (EPOR) expression in brain cells has remained difficult since previously available anti-EPOR antibodies (EPOR-AB) were unspecific. We report here a new, highly specific, polyclonal rabbit EPOR-AB directed against different epitopes in the cytoplasmic tail of human and murine EPOR and its characterization by mass spectrometric analysis of immuno-precipitated endogenous EPOR, Western blotting, immunostaining and flow cytometry. Among others, we applied genetic strategies including overexpression, Lentivirus-mediated conditional knockout of EpoR and tagged proteins, both on cultured cells and tissue sections, as well as intracortical implantation of EPOR-transduced cells to verify specificity. We show examples of EPOR expression in neurons, oligodendroglia, astrocytes and microglia. Employing this new EPOR-AB with double-labeling strategies, we demonstrate membrane expression of EPOR as well as its localization in intracellular compartments such as the Golgi apparatus. Moreover, we show injury-induced expression of EPOR. In mice, a stereotactically applied stab wound to the motor cortex leads to distinct EpoR expression by reactive GFAP-expressing cells in the lesion vicinity. In a patient suffering from epilepsy, neurons and oligodendrocytes of the hippocampus strongly express EPOR. To conclude, this new analytical tool will allow neuroscientists to pinpoint EPOR expression in cells of the nervous system and to better understand its role in healthy conditions, including brain development, as well as under pathological circumstances, such as upregulation upon distress and injury.

7.
Proteomics ; 13(9): 1417-22, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23456960

RESUMO

Simple protein separation by 1DE is a widely used method to reduce sample complexity and to prepare proteins for mass spectrometric identification via in-gel digestion. While several automated solutions are available for in-gel digestion particularly of small cylindric gel plugs derived from 2D gels, the processing of larger 1D gel-derived gel bands with liquid handling work stations is less well established in the field. Here, we introduce a digestion device tailored to this purpose and validate its performance in comparison to manual in-gel digestion. For relative quantification purposes, we extend the in-gel digestion procedure by iTRAQ labeling of the tryptic peptides and show that automation of the entire workflow results in robust quantification of proteins from samples of different complexity and dynamic range. We conclude that automation improves accuracy and reproducibility of our iTRAQ workflow as it minimizes the variability in both, digestion and labeling efficiency, the two major causes of irreproducible results in chemical labeling approaches.


Assuntos
Eletroforese/instrumentação , Eletroforese/métodos , Proteínas/análise , Automação , Bicarbonatos/química , Desenho de Equipamento , Células HeLa , Humanos , Ovalbumina/análise , Ovalbumina/isolamento & purificação , Proteínas/isolamento & purificação , Reprodutibilidade dos Testes , Ribonucleoproteínas Nucleares Pequenas/análise , Ribonucleoproteínas Nucleares Pequenas/isolamento & purificação , Soroalbumina Bovina/análise , Soroalbumina Bovina/isolamento & purificação , Espectrometria de Massas em Tandem , Fluxo de Trabalho
8.
J Neurosci ; 31(45): 16369-86, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22072688

RESUMO

Peripheral nerve myelin facilitates rapid impulse conduction and normal motor and sensory functions. Many aspects of myelin biogenesis, glia-axonal interactions, and nerve homeostasis are poorly understood at the molecular level. We therefore hypothesized that only a fraction of all relevant myelin proteins has been identified so far. Combining gel-based and gel-free proteomic approaches, we identified 545 proteins in purified mouse sciatic nerve myelin, including 36 previously known myelin constituents. By mass spectrometric quantification, the predominant P0, periaxin, and myelin basic protein constitute 21, 16, and 8% of the total myelin protein, respectively, suggesting that their relative abundance was previously misestimated due to technical limitations regarding protein separation and visualization. Focusing on tetraspan-transmembrane proteins, we validated novel myelin constituents using immuno-based methods. Bioinformatic comparison with mRNA-abundance profiles allowed the categorization in functional groups coregulated during myelin biogenesis and maturation. By differential myelin proteome analysis, we found that the abundance of septin 9, the protein affected in hereditary neuralgic amyotrophy, is strongly increased in a novel mouse model of demyelinating neuropathy caused by the loss of prion protein. Finally, the systematic comparison of our compendium with the positions of human disease loci allowed us to identify several candidate genes for hereditary demyelinating neuropathies. These results illustrate how the integration of unbiased proteome, transcriptome, and genome data can contribute to a molecular dissection of the biogenesis, cell biology, metabolism, and pathology of myelin.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas da Mielina/análise , Proteínas da Mielina/metabolismo , Bainha de Mielina/metabolismo , Proteoma/metabolismo , Nervo Isquiático/anatomia & histologia , Animais , Animais Recém-Nascidos , Quimiocinas/análise , Quimiocinas/metabolismo , Biologia Computacional , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Eletroforese em Gel Bidimensional , Masculino , Proteínas de Membrana/análise , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peso Molecular , Proteínas da Mielina/classificação , Proteínas da Mielina/genética , Bainha de Mielina/química , Príons/genética , Proteômica/métodos , RNA Mensageiro , Nervo Isquiático/metabolismo , Septinas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Tetraspanina 24/análise , Tetraspanina 24/metabolismo
9.
Anal Bioanal Chem ; 386(1): 92-103, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16821028

RESUMO

The combination of gel-based two-dimensional protein separations with protein identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is the workhorse for the large-scale analyses of proteomes. Such high-throughput proteomic approaches require automation of all post-separation steps and the in-gel digest of proteins especially is often the bottleneck in the protein identification workflow. With the objective of reaching the same high performance of manual low-throughput in-gel digest procedures, we have developed a novel stack-type digestion device and implemented it into a commercially available robotic liquid handling system. This modified system is capable of performing in-gel digest, extraction of proteolytic peptides, and subsequent sample preparation for MALDI-MS without any manual intervention, but with a performance at least identical to manual procedures as indicated on the basis of the sequence coverage obtained by peptide mass fingerprinting. For further refinement of the automated protein identification workflow, we have also developed a motor-operated matrix application device to reproducibly obtain homogenous matrix preparation of high quality. This matrix preparation was found to be suitable for the automated acquisition of both peptide mass fingerprint and fragment ion spectra from the same sample spot, a prerequisite for high confidence protein identifications on the basis of peptide mass and sequence information. Due to the implementation of the stack-type digestion device and the motor-operated matrix application device, the entire platform works in a reliable, cost-effective, and sensitive manner, yielding high confidence protein identifications even for samples in the concentration range of as low as 100 fmol protein per gel plug.


Assuntos
Proteínas/análise , Proteínas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Automação/instrumentação , Eletroforese em Gel de Poliacrilamida/métodos , Géis/química , Peso Molecular , Peptídeo Hidrolases/química , Mapeamento de Peptídeos/instrumentação , Peptídeos/análise , Peptídeos/química , Proteômica/instrumentação , Proteômica/métodos , Sensibilidade e Especificidade
10.
Cell ; 108(1): 121-33, 2002 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-11792326

RESUMO

Munc13-1 is a presynaptic protein with an essential role in synaptic vesicle priming. It contains a diacylglycerol (DAG)/beta phorbol ester binding C(1) domain and is a potential target of the DAG second messenger pathway that may act in parallel with PKCs. Using genetically modified mice that express a DAG/beta phorbol ester binding-deficient Munc13-1(H567K) variant instead of the wild-type protein, we determined the relative contribution of PKCs and Munc13-1 to DAG/beta phorbol ester-dependent regulation of neurotransmitter release. We show that Munc13s are the main presynaptic DAG/beta phorbol ester receptors in hippocampal neurons. Modulation of Munc13-1 activity by second messengers via the DAG/beta phorbol ester binding C(1) domain is essential for use-dependent alterations of synaptic efficacy and survival.


Assuntos
Diglicerídeos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Ésteres de Forbol/farmacologia , Proteína Quinase C/metabolismo , Transmissão Sináptica/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação/genética , Células Cultivadas , Expressão Gênica/fisiologia , Hipocampo/citologia , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Dados de Sequência Molecular , Mutagênese/fisiologia , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Mutação Puntual/fisiologia , Proteína Quinase C/genética , Sinapses/enzimologia , Transmissão Sináptica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...