Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7889, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036506

RESUMO

Poxviruses are unusual DNA viruses that replicate in the cytoplasm. To do so, they encode approximately 100 immunomodulatory proteins that counteract cytosolic nucleic acid sensors such as cGAMP synthase (cGAS) along with several other antiviral response pathways. Yet most of these immunomodulators are expressed very early in infection while many are variable host range determinants, and significant gaps remain in our understanding of poxvirus sensing and evasion strategies. Here, we show that after infection is established, subsequent progression of the viral lifecycle is sensed through specific changes to mitochondria that coordinate distinct aspects of the antiviral response. Unlike other viruses that cause extensive mitochondrial damage, poxviruses sustain key mitochondrial functions including membrane potential and respiration while reducing reactive oxygen species that drive inflammation. However, poxvirus replication induces mitochondrial hyperfusion that independently controls the release of mitochondrial DNA (mtDNA) to prime nucleic acid sensors and enables an increase in glycolysis that is necessary to support interferon stimulated gene (ISG) production. To counter this, the poxvirus F17 protein localizes to mitochondria and dysregulates mTOR to simultaneously destabilize cGAS and block increases in glycolysis. Our findings reveal how the poxvirus F17 protein disarms specific mitochondrially orchestrated responses to later stages of poxvirus replication.


Assuntos
Ácidos Nucleicos , Poxviridae , Poxviridae/genética , Poxviridae/metabolismo , Citoplasma , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Antivirais/farmacologia , Antivirais/metabolismo , Ácidos Nucleicos/metabolismo
2.
J Virol ; 97(3): e0175822, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36916936

RESUMO

Recent studies have begun to reveal the complex and multifunctional roles of N6-methyladenosine (m6A) modifications and their associated writer, reader, and eraser proteins in infection by diverse RNA and DNA viruses. However, little is known about their regulation and functions during infection by several viruses, including poxviruses. Here, we show that members of the YTH Domain Family (YTHDF), in particular YTHDF2, are downregulated as the prototypical poxvirus, vaccinia virus (VacV) enters later stages of replication in a variety of natural target cell types, but not in commonly used transformed cell lines wherein the control of YTHDF2 expression appears to be dysregulated. YTHDF proteins also decreased at late stages of infection by herpes simplex virus 1 (HSV-1) but not human cytomegalovirus, suggesting that YTHDF2 is downregulated in response to infections that induce host shutoff. In line with this idea, YTHDF2 was potently downregulated upon infection with a VacV mutant expressing catalytically inactive forms of the decapping enzymes, D9 and D10, which fails to degrade dsRNA and induces a protein kinase R response that itself inhibits protein synthesis. Overexpression and RNAi-mediated depletion approaches further demonstrate that YTHDF2 does not directly affect VacV replication. Instead, experimental downregulation of YTHDF2 or the related family member, YTHDF1, induces a potent increase in interferon-stimulated gene expression and establishes an antiviral state that suppresses infection by either VacV or HSV-1. Combined, our data suggest that YTHDF2 is destabilized in response to infection-induced host shutoff and serves to augment host antiviral responses. IMPORTANCE There is increasing recognition of the importance of N6-methyladenosine (m6A) modifications to both viral and host mRNAs and the complex roles this modification plays in determining the fate of infection by diverse RNA and DNA viruses. However, in many instances, the functional contributions and importance of specific m6A writer, reader, and eraser proteins remains unknown. Here, we show that natural target cells but not transformed cell lines downregulate the YTH Domain Family (YTHDF) of m6A reader proteins, in particular YTHDF2, in response to shutoff of protein synthesis upon infection with the large DNA viruses, vaccinia virus (VacV), or herpes simplex virus type 1. We further reveal that YTHDF2 downregulation also occurs as part of the host protein kinase R response to a VacV shutoff mutant and that this downregulation of YTHDF family members functions to enhance interferon-stimulated gene expression to create an antiviral state.


Assuntos
Poxviridae , Proteínas de Ligação a RNA , Vaccinia virus , Vacínia , Humanos , Expressão Gênica , Interferons/metabolismo , Poxviridae/genética , Proteínas Quinases/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Vacínia/virologia , Vaccinia virus/metabolismo , Replicação Viral , Infecções por Poxviridae/virologia , Interações Hospedeiro-Patógeno
3.
Nat Immunol ; 20(2): 116-118, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30643262
4.
PLoS Pathog ; 14(4): e1006995, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29659627

RESUMO

Methylation at the N6 position of adenosine (m6A) is a highly prevalent and reversible modification within eukaryotic mRNAs that has been linked to many stages of RNA processing and fate. Recent studies suggest that m6A deposition and proteins involved in the m6A pathway play a diverse set of roles in either restricting or modulating the lifecycles of select viruses. Here, we report that m6A levels are significantly increased in cells infected with the oncogenic human DNA virus Kaposi's sarcoma-associated herpesvirus (KSHV). Transcriptome-wide m6A-sequencing of the KSHV-positive renal carcinoma cell line iSLK.219 during lytic reactivation revealed the presence of m6A across multiple kinetic classes of viral transcripts, and a concomitant decrease in m6A levels across much of the host transcriptome. However, we found that depletion of the m6A machinery had differential pro- and anti-viral impacts on viral gene expression depending on the cell-type analyzed. In iSLK.219 and iSLK.BAC16 cells the pathway functioned in a pro-viral manner, as depletion of the m6A writer METTL3 and the reader YTHDF2 significantly impaired virion production. In iSLK.219 cells the defect was linked to their roles in the post-transcriptional accumulation of the major viral lytic transactivator ORF50, which is m6A modified. In contrast, although the ORF50 mRNA was also m6A modified in KSHV infected B cells, ORF50 protein expression was instead increased upon depletion of METTL3, or, to a lesser extent, YTHDF2. These results highlight that the m6A pathway is centrally involved in regulating KSHV gene expression, and underscore how the outcome of this dynamically regulated modification can vary significantly between cell types.


Assuntos
Adenosina/análogos & derivados , Herpesvirus Humano 8/patogenicidade , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/metabolismo , Sarcoma de Kaposi/patologia , Latência Viral/fisiologia , Replicação Viral/fisiologia , Adenosina/química , Linfócitos B/metabolismo , Linfócitos B/patologia , Linfócitos B/virologia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/virologia , Células Cultivadas , Células HEK293 , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Neoplasias Renais/virologia , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas de Ligação a RNA/genética , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/virologia
5.
J Immunol ; 196(4): 1900-9, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26773151

RESUMO

Type I IFNs (IFN-I) are key innate mediators that create a profound antiviral state and orchestrate the activation of almost all immune cells. Plasmacytoid dendritic cells (pDCs) are the most powerful IFN-I-producing cells and play important roles during viral infections, cancer, and autoimmune diseases. By comparing gene expression profiles of murine pDCs and conventional DCs, we found that CD28, a prototypic T cell stimulatory receptor, was highly expressed in pDCs. Strikingly, CD28 acted as a negative regulator of pDC IFN-I production upon TLR stimulation but did not affect pDC survival or maturation. Importantly, cell-intrinsic CD28 expression restrained pDC (and systemic) IFN-I production during in vivo RNA and DNA viral infections, limiting antiviral responses and enhancing viral growth early after exposure. Finally, CD28 also downregulated IFN-I response upon skin injury. Our study identified a new pDC regulatory mechanism by which the same CD28 molecule that promotes stimulation in most cells that express it is co-opted to negatively regulate pDC IFN-I production and limit innate responses.


Assuntos
Antígenos CD28/imunologia , Células Dendríticas/imunologia , Interferon Tipo I/biossíntese , Interferon Tipo I/imunologia , Animais , Células Dendríticas/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
6.
J Virol ; 90(1): 599-604, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26468530

RESUMO

Transcription of herpesviral late genes is stimulated after the onset of viral DNA replication but otherwise restricted. Late gene expression in gammaherpesviruses requires the coordination of six early viral proteins, termed viral transactivation factors (vTFs). Here, we mapped the organization of this protein complex for Kaposi's sarcoma-associated herpesvirus. Disruption of this complex via point mutation of the interaction interface between the open reading frame 24 (ORF24) and ORF34 vTFs ablated both late gene expression and viral replication.


Assuntos
Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/genética , Transcrição Gênica , Proteínas Virais/metabolismo , Linhagem Celular , Análise Mutacional de DNA , Herpesvirus Humano 8/fisiologia , Humanos , Modelos Biológicos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação Puntual , Ligação Proteica , Mapeamento de Interação de Proteínas , Multimerização Proteica , Proteínas Virais/genética , Replicação Viral
7.
Elife ; 42015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26565589

RESUMO

Recognition and elimination of tumor cells by the immune system is crucial for limiting tumor growth. Natural killer (NK) cells become activated when the receptor NKG2D is engaged by ligands that are frequently upregulated in primary tumors and on cancer cell lines. However, the molecular mechanisms driving NKG2D ligand expression on tumor cells are not well defined. Using a forward genetic screen in a tumor-derived human cell line, we identified several novel factors supporting expression of the NKG2D ligand ULBP1. Our results show stepwise contributions of independent pathways working at multiple stages of ULBP1 biogenesis. Deeper investigation of selected hits from the screen showed that the transcription factor ATF4 drives ULBP1 gene expression in cancer cell lines, while the RNA-binding protein RBM4 supports ULBP1 expression by suppressing a novel alternatively spliced isoform of ULBP1 mRNA. These findings offer insight into the stress pathways that alert the immune system to danger.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Fator 4 Ativador da Transcrição/metabolismo , Linhagem Celular Tumoral , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Testes Genéticos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Proteínas de Ligação a RNA/metabolismo
8.
J Virol ; 89(6): 3343-55, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25589641

RESUMO

UNLABELLED: Rapid innate responses to viral encounters are crucial to shaping the outcome of infection, from viral clearance to persistence. Transforming growth factor ß (TGF-ß) is a potent immune suppressor that is upregulated early upon viral infection and maintained during chronic infections in both mice and humans. However, the role of TGF-ß signaling in regulating individual cell types in vivo is still unclear. Using infections with two different persistent viruses, murine cytomegalovirus (MCMV) and lymphocytic choriomeningitis virus (LCMV; Cl13), in their natural rodent host, we observed that TGF-ß signaling on dendritic cells (DCs) did not dampen DC maturation or cytokine production in the early stages of chronic infection with either virus in vivo. In contrast, TGF-ß signaling prior to (but not during) chronic viral infection directly restricted the natural killer (NK) cell number and effector function. This restriction likely compromised both the early control of and host survival upon MCMV infection but not the long-term control of LCMV infection. These data highlight the context and timing of TGF-ß signaling on different innate cells that contribute to the early host response, which ultimately influences the outcome of chronic viral infection in vivo. IMPORTANCE: In vivo host responses to pathogens are complex processes involving the cooperation of many different immune cells migrating to specific tissues over time, but these events cannot be replicated in vitro. Viruses causing chronic infections are able to subvert this immune response and represent a human health burden. Here we used two well-characterized viruses that are able to persist in their natural mouse host to dissect the role of the suppressive molecule TGF-ß in dampening host responses to infection in vivo. This report presents information that allows an increased understanding of long-studied TGF-ß signaling by examining its direct effect on different immune cells that are activated very early after in vivo viral infection and may aid with the development of new antiviral therapeutic strategies.


Assuntos
Células Dendríticas/imunologia , Infecções por Herpesviridae/veterinária , Células Matadoras Naturais/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/fisiologia , Muromegalovirus/fisiologia , Doenças dos Roedores/imunologia , Fator de Crescimento Transformador beta/imunologia , Animais , Citocinas/imunologia , Feminino , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Humanos , Coriomeningite Linfocítica/genética , Coriomeningite Linfocítica/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças dos Roedores/genética , Doenças dos Roedores/virologia , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...