Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(25): e202403417, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38627209

RESUMO

Flavins and their alloxazine isomers are key chemical scaffolds for bioinspired electron transfer strategies. Their properties can be fine-tuned by functional groups, which must be introduced at an early stage of the synthesis as their aromatic ring is inert towards post-functionalization. We show that the introduction of a remote metal-binding redox site on alloxazine and flavin activates their aromatic ring towards direct C-H functionalization. Mechanistic studies are consistent with a synthetic sequence involving ground-state single electron transfer (SET) with an electrophilic source followed by radical-radical coupling. This unprecedented reactivity opens new opportunities in molecular editing of flavins by direct aromatic post-functionalization and the utility of the method is demonstrated with the site-selective C6 functionalization of alloxazine and flavin with a CF3 group, Br or Cl, that can be further elaborated into OH and aryl for chemical diversification.

2.
Inorg Chem ; 62(8): 3321-3332, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36780646

RESUMO

Potential inversion refers to the situation where a protein cofactor or a synthetic molecule can be oxidized or reduced twice in a cooperative manner; that is, the second electron transfer is easier than the first. This property is very important regarding the catalytic mechanism of enzymes that bifurcate electrons and the properties of bidirectional redox molecular catalysts that function in either direction of the reaction with no overpotential. Cyclic voltammetry is the most common technique for characterizing the thermodynamics and kinetics of electron transfer to or from these molecules. However, a gap in the literature is the absence of analytical predictions to help interpret the values of the voltammetric peak potentials when potential inversion occurs; the cyclic voltammograms are therefore often analyzed by simulating the data, with no discussion of the possibility of overfitting and often no estimation of the error on the determined parameters. Here we formulate the theory for the voltammetry of freely diffusing or surface-confined two-electron redox species in the experimentally relevant irreversible limit where the peak separation depends on the scan rate. We explain why the model is intrinsically underdetermined, and we illustrate this conclusion by analysis of the voltammetry of a nickel complex with redox-active iminosemiquinone ligands. Being able to characterize the thermodynamics of two-electron electron-transfer reactions will be crucial for designing more efficient catalysts.

3.
Angew Chem Int Ed Engl ; 60(15): 8419-8424, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33448550

RESUMO

The synthesis of the first mesogenic donor-acceptor polyoxometalate (POM)-based hybrid is herein described. The structural and electronic properties of the hybrid compound were evaluated through combination of small- and wide-angle X-ray scattering, optical microscopy, electrochemistry and photoluminescence. In the solid state, the compound behaves as a birefringent solid, displaying a lamellar organization in which double-layers of POMs and bis(thiophene)thienothiophene organic donors alternate regularly. Noticeably, the sub-unit organizations in the composite are similar to that observed for the individual POM and organic donor precursors. Photophysical studies show that in the hybrid, the fluorescence of the organic donor unit is considerably quenched both in solution and in the solid state, which is attributed to occurrence of intramolecular charge-separated state.

4.
Chem Soc Rev ; 49(23): 8840-8867, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33107878

RESUMO

Biological systems provide attractive reactivity blueprints for the design of challenging chemical transformations. Emulating the operating mode of natural systems may however not be so easy and direct translation of structural observations does not always afford the anticipated efficiency. Metalloenzymes rely on earth-abundant metals to perform an incredibly wide range of chemical transformations. To do so, enzymes in general have evolved tools and tricks to enable control of such reactivity. The underlying concepts related to these tools are usually well-known to enzymologists and bio(inorganic) chemists but may be a little less familiar to organometallic chemists. So far, the field of bioinspired catalysis has greatly focused on the coordination sphere and electronic effects for the design of functional enzyme models but might benefit from a paradigm shift related to recent findings in biological systems. The goal of this review is to bring these fields closer together as this could likely result in the development of a new generation of highly efficient bioinspired systems. This contribution covers the fields of redox-active ligands, entatic state reactivity, energy conservation through electron bifurcation, and quantum tunneling for C-H activation.


Assuntos
Complexos de Coordenação/metabolismo , Enzimas/metabolismo , Biocatálise , Complexos de Coordenação/química , Enzimas/química , Ligantes , Estrutura Molecular , Oxirredução
5.
Beilstein J Org Chem ; 16: 858-870, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32461767

RESUMO

Copper catalysis finds applications in various synthetic fields by utilizing the ability of copper to sustain mono- and bielectronic elementary steps. Further to the development of well-defined copper complexes with classical ligands such as phosphines and N-heterocyclic carbenes, a new and fast-expanding area of research is exploring the possibility of a complementing metal-centered reactivity with electronic participation by the coordination sphere. To achieve this electronic flexibility, redox-active ligands can be used to engage in a fruitful "electronic dialogue" with the metal center, and provide additional venues for electron transfer. This review aims to present the latest results in the area of copper-based cooperative catalysis with redox-active ligands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...