Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 11703, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474512

RESUMO

Biocompatibility and the ability to mediate the appropriate flux of ions, urea, and uremic toxins between blood and dialysate components are key parameters for membranes used in dialysis. Oxone-mediated TEMPO-oxidized cellulose nanomaterials have been demonstrated to be excellent additives in the production and tunability of ultrafiltration and dialysis membranes. In the present study, nanocellulose ionic liquid membranes (NC-ILMs) were tested in vitro and ex vivo. An increase in flux of up to two orders of magnitude was observed with increased rejection (about 99.6%) of key proteins compared to that of polysulfone (PSf) and other commercial membranes. NC-ILMs have a sharper molecular weight cut-off than other phase inversion polymeric membranes, allowing for high throughput of urea and a uremic toxin surrogate and limited passage of proteins in dialysis applications. Superior anti-fouling properties were also observed for the NC-ILMs, including a > 5-h operation time with no systemic anticoagulation in blood samples. Finally, NC-ILMs were found to be biocompatible in rat ultrafiltration and dialysis experiments, indicating their potential clinical utility in dialysis and other blood filtration applications. These superior properties may allow for a new class of membranes for use in a wide variety of industrial applications, including the treatment of patients suffering from renal disease.


Assuntos
Diálise Renal , Toxinas Biológicas , Ratos , Animais , Ultrafiltração , Soluções para Diálise , Proteínas , Membranas Artificiais , Ureia
2.
Membranes (Basel) ; 12(10)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36295749

RESUMO

Emerging technologies in nanotechnology and biomedical engineering have led to an increase in the use of implantable biomedical devices. These devices are currently battery powered which often means they must be surgically replaced during a patient's lifetime. Therefore, there is an important need for a power source that could provide continuous, stable power over a prolonged time. Reverse electrodialysis (RED) based biopower cells have been previously used to generate continuous power from physiologically relevant fluids; however, the low salinity gradient that exists within the body limited the performance of the biopower cell. In this study, a miniaturized RED biopower cell design coupled with a salt cartridge was evaluated for boosting the salt concentration gradient supplied to RED in situ. For the salt cartridge, polysulfone (PSf) hollow fibers were prepared in-house and saturated with NaCl solutions to deliver salt and thereby enhance the concentration gradient. The effect of operational parameters including solution flow rate and cartridge salt concentration on salt transport performance was evaluated. The results demonstrated that the use of the salt cartridge was able to increase the salt concentration of the RED inlet stream by 74% which in turn generated a 3-fold increase in the open circuit voltage (OCV) of the biopower cell. This innovative adaptation of the membrane-based approach into portable power generation could help open new pathways in various biomedical applications.

3.
Cardiovasc Eng Technol ; 13(1): 1-13, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34080171

RESUMO

PURPOSE: Flow phantoms are used in experimental settings to aid in the simulation of blood flow. Custom geometries are available, but current phantom materials present issues with degradability and/or mimicking the mechanical properties of human tissue. In this study, a method of fabricating custom wall-less flow phantoms from a tissue-mimicking gel using 3D printed inserts is developed. METHODS: A 3D blood vessel geometry example of a bifurcated artery model was 3D printed in polyvinyl alcohol, embedded in tissue-mimicking gel, and subsequently dissolved to create a phantom. Uniaxial compression testing was performed to determine the Young's moduli of the five gel types. Angle-independent, ultrasound-based imaging modalities, Vector Flow Imaging (VFI) and Blood Speckle Imaging (BSI), were utilized for flow visualization of a straight channel phantom. RESULTS: A wall-less phantom of the bifurcated artery was fabricated with minimal bubbles and continuous flow demonstrated. Additionally, flow was visualized through a straight channel phantom by VFI and BSI. The available gel types are suitable for mimicking a variety of tissue types, including cardiac tissue and blood vessels. CONCLUSION: Custom, tissue-mimicking flow phantoms can be fabricated using the developed methodology and have potential for use in a variety of applications, including ultrasound-based imaging methods. This is the first reported use of BSI with an in vitro flow phantom.


Assuntos
Coração , Álcool de Polivinil , Artérias , Humanos , Imagens de Fantasmas , Ultrassonografia
4.
Membranes (Basel) ; 11(1)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435388

RESUMO

Wafer-enhanced electrodeionization (WE-EDI) is an electrically driven separations technology that occurs under the influence of an applied electric field and heavily depends on ion exchange resin chemistry. Unlike filtration processes, WE-EDI can be used to selectively remove ions even from high concentration systems. Because every excess ion transported increases the operating costs, the selective separation offered by WE-EDI can provide a more energy-efficient and cost-effective process, especially for highly concentrated salt solutions. This work reports the performance comparison of four commonly used cation exchange resins (Amberlite IR120 Na+, Amberlite IRP 69, Dowex MAC 3 H+, and Amberlite CG 50) and their influence on the current efficiency and selectivity for the removal of cations from a highly concentrated salt stream. The current efficiencies were high for all the resin types studied. Results also revealed that weak cation exchange resins favor the transport of the monovalent ion (Na+) while strong cation exchange resins either had no strong preference or preferred to transport the divalent ions (Ca2+ and Mg2+). Moreover, the strong cation exchange resins in powder form generally performed better in wafers than those in the bead form for the selective removal of divalent ions (selectivity > 1). To further understand the impact of particle size, resins in the bead form were ground into a powder. After grinding the strong cation resins displayed similar behavior (more consistent current efficiency and preference for transporting divalent ions) to the strong cation resins in powder form. This indicates the importance of resin size in the performance of wafers.

5.
Polymers (Basel) ; 12(6)2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32549325

RESUMO

Recent exploration of cellulose nanomaterials has resulted in the creation of Oxone®-Mediated TEMPO-Oxidized Cellulose Nanomaterials (OTO-CNMs). These materials, when incorporated into a polymer matrix, have properties showing increased flux, decreased membrane resistance, and improved clearance, making them an ideal material for dialysis. This study is the first to focus on the implementation of OTO-CNMs into hollow fiber membranes and a comparison of these membranes for ultrafiltration and dialysis. Ultrafiltration and dialysis were performed using bovine serum albumin (BSA), lysozyme, and urea to analyze various properties of each hollow fiber membrane type. The results presented in this study provide the first quantitative evaluation of the clearance and sieving characteristics of Oxone®-Mediated TEMPO-Oxidized Cellulose-Nanomaterial-doped cellulose triacetate mixed-matrix hemodialyzers. While the cellulose nanomaterials increased flux (10-30%) in ultrafiltration mode, this was offset by increased removal of albumin. However, in dialysis mode, these materials drastically increased the mass transfer of components (50-100%), which could lead to significantly lower dialysis times for patients. This change in the performance between the two different modes is most likely due to the increased porosity of the cellulose nanomaterials.

6.
Langmuir ; 27(12): 7799-805, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21619008

RESUMO

Dynamic and equilibrium thermal behavior of plasmon-heated gold/silica capillary nanocomposite during evaporative cooling by water or butanol is accurately described at centimeter length scales by continuum optoplasmonic thermodynamics for continuous-wave laser irradiation of 15-50 mW. Gold nanoparticles randomly distributed on the capillary via electroless plating exhibited a composite extinction cross section of 66.74 ± 0.72% of the area of the laser spot, more than 2-fold larger than the physical cross-section of the AuNPs. The extinction cross-section of the AuNPs capillary was invariant for incident laser powers of 15-150 mW and was reduced slightly in the presence of butanol and water due to absorption peak-shifting to lower energies. Introducing composite thermal parameters into the optoplasmonic thermodynamic relation extended its ability to predict heat transfer to laser powers of 100 and 150 mW for water and butanol, respectively. Nonlinear behaviors such as exponential thermal profiles caused by limited thermal conductivity and film boiling are identified at higher laser powers and prevent further extension of the relation. Mathematical reduction of temperature and time variables of the mathematical description shows it accounts for all measured thermodynamic effects when the aforementioned nonlinear behaviors are not present. This confirms that extraordinary thermal transport observed in some nanocomposites are absent for AuNP/silica systems in the given ranges, which allows a macroscale, continuum approach to describe thermal transport.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...