Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Chem Biol ; 28(4): 537-545.e4, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33472023

RESUMO

Neuroinflammation characterizes multiple neurologic diseases, including primary inflammatory conditions such as multiple sclerosis and classical neurodegenerative diseases. Aberrant activation of the innate immune system contributes to disease progression, but drugs modulating innate immunity, particularly within the central nervous system (CNS), are lacking. The CNS-penetrant natural product bryostatin-1 attenuates neuroinflammation by targeting innate myeloid cells. Supplies of natural bryostatin-1 are limited, but a recent scalable good manufacturing practice (GMP) synthesis has enabled access to it and its analogs (bryologs), the latter providing a path to more efficacious, better tolerated, and more accessible agents. Here, we show that multiple synthetically accessible bryologs replicate the anti-inflammatory effects of bryostatin-1 on innate immune cells in vitro, and a lead bryolog attenuates neuroinflammation in vivo, actions mechanistically dependent on protein kinase C (PKC) binding. Our findings identify bryologs as promising drug candidates for targeting innate immunity in neuroinflammation and create a platform for evaluation of synthetic PKC modulators in neuroinflammatory diseases.


Assuntos
Briostatinas/farmacologia , Desenho de Fármacos , Imunidade Inata/efeitos dos fármacos , Inflamação/tratamento farmacológico , Proteína Quinase C-delta/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Animais , Briostatinas/síntese química , Briostatinas/química , Feminino , Imunidade Inata/imunologia , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Conformação Molecular , Gravidez , Proteína Quinase C-delta/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Estereoisomerismo
2.
Proc Natl Acad Sci U S A ; 116(7): 2701-2706, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30692251

RESUMO

Glutamate is the most abundant excitatory neurotransmitter, present at the bulk of cortical synapses, and participating in many physiologic and pathologic processes ranging from learning and memory to stroke. The tripeptide, glutathione, is one-third glutamate and present at up to low millimolar intracellular concentrations in brain, mediating antioxidant defenses and drug detoxification. Because of the substantial amounts of brain glutathione and its rapid turnover under homeostatic control, we hypothesized that glutathione is a relevant reservoir of glutamate and could influence synaptic excitability. We find that drugs that inhibit generation of glutamate by the glutathione cycle elicit decreases in cytosolic glutamate and decreased miniature excitatory postsynaptic potential (mEPSC) frequency. In contrast, pharmacologically decreasing the biosynthesis of glutathione leads to increases in cytosolic glutamate and enhanced mEPSC frequency. The glutathione cycle can compensate for decreased excitatory neurotransmission when the glutamate-glutamine shuttle is inhibited. Glutathione may be a physiologic reservoir of glutamate neurotransmitter.


Assuntos
Glutationa/metabolismo , Sinapses/metabolismo , Animais , Células Cultivadas , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Glutâmico/metabolismo , Homeostase , Neurônios/fisiologia , Ratos Sprague-Dawley , Transmissão Sináptica/fisiologia
3.
PLoS One ; 8(4): e58996, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23634200

RESUMO

One of the goals in neuroscience is to obtain tractable laboratory cultures that closely recapitulate in vivo systems while still providing ease of use in the lab. Because neurons can exist in the body over a lifetime, long-term culture systems are necessary so as to closely mimic the physiological conditions under laboratory culture conditions. Ideally, such a neuronal organoid culture would contain multiple cell types, be highly differentiated, and have a high density of interconnected cells. However, before these types of cultures can be created, certain problems associated with long-term neuronal culturing must be addressed. We sought to develop a new protocol which may further prolong the duration and integrity of E18 rat hippocampal cultures. We have developed a protocol that allows for culturing of E18 hippocampal neurons at high densities for more than 120 days. These cultured hippocampal neurons are (i) well differentiated with high numbers of synapses, (ii) anchored securely to their substrate, (iii) have high levels of functional connectivity, and (iv) form dense multi-layered cellular networks. We propose that our culture methodology is likely to be effective for multiple neuronal subtypes-particularly those that can be grown in Neurobasal/B27 media. This methodology presents new avenues for long-term functional studies in neurons.


Assuntos
Técnicas de Cultura de Células/métodos , Hipocampo/citologia , Neurônios/citologia , Organoides/citologia , Animais , Cálcio/metabolismo , Contagem de Células , Diferenciação Celular , Meios de Cultura/química , Espaço Intracelular/metabolismo , Ratos , Sinapses/metabolismo , Fatores de Tempo
4.
Neuron ; 71(1): 131-41, 2011 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-21745643

RESUMO

PSD-95, a principal scaffolding component of the postsynaptic density, is targeted to synapses by palmitoylation, where it couples NMDA receptor stimulation to production of nitric oxide (NO) by neuronal nitric oxide synthase (nNOS). Here, we show that PSD-95 is physiologically S-nitrosylated. We identify cysteines 3 and 5, which are palmitoylated, as sites of nitrosylation, suggesting a competition between these two modifications. In support of this hypothesis, physiologically produced NO inhibits PSD-95 palmitoylation in granule cells of the cerebellum, decreasing the number of PSD-95 clusters at synaptic sites. Further, decreased palmitoylation, as seen in heterologous cells treated with 2-bromopalmitate or in ZDHHC8 knockout mice deficient in a PSD-95 palmitoyltransferase, results in increased PSD-95 nitrosylation. These data support a model in which NMDA-mediated production of NO regulates targeting of PSD-95 to synapses via mutually competitive cysteine modifications. Thus, differential modification of cysteines may represent a general paradigm in signal transduction.


Assuntos
Guanilato Quinases/metabolismo , Lipoilação/genética , Proteínas de Membrana/metabolismo , Óxido Nítrico/metabolismo , Sinapses/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Proteína 4 Homóloga a Disks-Large , Células HEK293 , Humanos , Lipoilação/efeitos dos fármacos , Camundongos , Camundongos Knockout , N-Metilaspartato/farmacologia , Palmitatos/farmacologia
5.
Biochem Biophys Res Commun ; 409(4): 596-602, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21539809

RESUMO

Glutamate, the principal excitatory neurotransmitter of the brain, participates in a multitude of physiologic and pathologic processes, including learning and memory. Glutathione, a tripeptide composed of the amino acids glutamate, cysteine, and glycine, serves important cofactor roles in antioxidant defense and drug detoxification, but glutathione deficits occur in multiple neuropsychiatric disorders. Glutathione synthesis and metabolism are governed by a cycle of enzymes, the γ-glutamyl cycle, which can achieve intracellular glutathione concentrations of 1-10mM. Because of the considerable quantity of brain glutathione and its rapid turnover, we hypothesized that glutathione may serve as a reservoir of neural glutamate. We quantified glutamate in HT22 hippocampal neurons, PC12 cells and primary cortical neurons after treatment with molecular inhibitors targeting three different enzymes of the glutathione metabolic cycle. Inhibiting 5-oxoprolinase and γ-glutamyl transferase, enzymes that liberate glutamate from glutathione, leads to decreases in glutamate. In contrast, inhibition of γ-glutamyl cysteine ligase, which uses glutamate to synthesize glutathione, results in substantial glutamate accumulation. Increased glutamate levels following inhibition of glutathione synthesis temporally precede later effects upon oxidative stress.


Assuntos
Ácido Glutâmico/biossíntese , Glutationa/metabolismo , Neurônios/metabolismo , Animais , Butionina Sulfoximina/farmacologia , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Hipocampo/citologia , Imidazolinas/farmacologia , Isoxazóis/farmacologia , Camundongos , Piroglutamato Hidrolase/antagonistas & inibidores , Piroglutamato Hidrolase/metabolismo , Ratos , gama-Glutamiltransferase/antagonistas & inibidores , gama-Glutamiltransferase/metabolismo
6.
Nat Cell Biol ; 12(11): 1094-100, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20972425

RESUMO

S-nitrosylation of proteins by nitric oxide is a major mode of signalling in cells. S-nitrosylation can mediate the regulation of a range of proteins, including prominent nuclear proteins, such as HDAC2 (ref. 2) and PARP1 (ref. 3). The high reactivity of the nitric oxide group with protein thiols, but the selective nature of nitrosylation within the cell, implies the existence of targeting mechanisms. Specificity of nitric oxide signalling is often achieved by the binding of nitric oxide synthase (NOS) to target proteins, either directly or through scaffolding proteins such as PSD-95 (ref. 5) and CAPON. As the three principal isoforms of NOS--neuronal NOS (nNOS), endothelial NOS (eNOS) and inducible NOS (iNOS)--are primarily non-nuclear, the mechanisms by which nuclear proteins are selectively nitrosylated have been elusive. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is physiologically nitrosylated at its Cys 150 residue. Nitrosylated GAPDH (SNO-GAPDH) binds to Siah1, which possesses a nuclear localization signal, and is transported to the nucleus. Here, we show that SNO-GAPDH physiologically transnitrosylates nuclear proteins, including the deacetylating enzyme sirtuin-1 (SIRT1), histone deacetylase-2 (HDAC2) and DNA-activated protein kinase (DNA-PK). Our findings reveal a novel mechanism for targeted nitrosylation of nuclear proteins and suggest that protein-protein transfer of nitric oxide groups may be a general mechanism in cellular signal transduction.


Assuntos
Proteína Quinase Ativada por DNA/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Histona Desacetilase 2/metabolismo , Proteínas Nucleares/metabolismo , Sirtuína 1/metabolismo , Células Cultivadas , Humanos , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Transdução de Sinais , Sirtuína 1/antagonistas & inibidores
7.
Neuron ; 51(4): 431-40, 2006 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-16908409

RESUMO

Dexras1 is a 30 kDa G protein in the Ras subfamily whose discovery was based on its pronounced inducibility by the glucocorticoid dexamethasone. It binds to neuronal nitric oxide synthase (nNOS) via the adaptor protein CAPON, eliciting S-nitrosylation and activation of Dexras1. We report that Dexras1 binds to the peripheral benzodiazepine receptor-associated protein (PAP7), a protein of unknown function that binds to cyclic AMP-dependent protein kinase and the peripheral benzodiazepine receptor. PAP7 in turn binds to the divalent metal transporter (DMT1), an iron import channel. We have identified a signaling cascade in neurons whereby stimulation of NMDA receptors activates nNOS, leading to S-nitrosylation and activation of Dexras1, which, via PAP7 and DMT1, physiologically induces iron uptake. As selective iron chelation prevents NMDA neurotoxicity in cortical cultures, the NMDA-NO-Dexras1-PAP7-DMT1-iron uptake signaling cascade also appears to mediate NMDA neurotoxicity.


Assuntos
Homeostase/fisiologia , Ferro/metabolismo , Óxido Nítrico/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Transdução de Sinais/fisiologia , Proteínas ras/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Aldeídos/farmacologia , Animais , Western Blotting/métodos , Proteínas de Transporte de Cátions/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Maleato de Dizocilpina/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Embrião de Mamíferos , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Imunofluorescência/métodos , Homeostase/efeitos dos fármacos , Humanos , Hidrazonas/farmacologia , Imunoprecipitação/métodos , Quelantes de Ferro/farmacologia , Proteínas de Ligação ao Ferro/metabolismo , Proteínas de Membrana , Camundongos , Camundongos Knockout , Modelos Biológicos , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo I/deficiência , Óxido Nítrico Sintase Tipo I/metabolismo , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Ratos , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Receptores de GABA-A/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transfecção/métodos
8.
Proc Natl Acad Sci U S A ; 103(10): 3887-9, 2006 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-16505364

RESUMO

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) participates in a cell death cascade wherein a variety of stimuli activate nitric oxide (NO) synthases with NO nitrosylating GAPDH, conferring on it the ability to bind to Siah, an E3-ubiquitin-ligase, whose nuclear localization signal enables the GAPDH/Siah protein complex to translocate to the nucleus where degradation of Siah targets elicits cell death. R-(-)-Deprenyl (deprenyl) ameliorates the progression of disability in early Parkinson's disease and also has neuroprotective actions. We show that deprenyl and a related agent, TCH346, in subnanomolar concentrations, prevent S-nitrosylation of GAPDH, the binding of GAPDH to Siah, and nuclear translocation of GAPDH. In mice treated with the dopamine neuronal toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), low doses of deprenyl prevent binding of GAPDH and Siah1 in the dopamine-enriched corpus striatum.


Assuntos
Apoptose/efeitos dos fármacos , Gliceraldeído-3-Fosfato Desidrogenases/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Animais , Antiparkinsonianos/farmacologia , Apoptose/fisiologia , Linhagem Celular , Gliceraldeído-3-Fosfato Desidrogenases/fisiologia , Humanos , Técnicas In Vitro , Intoxicação por MPTP/patologia , Intoxicação por MPTP/fisiopatologia , Masculino , Camundongos , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Degeneração Neural/prevenção & controle , Óxido Nítrico/metabolismo , Proteínas Nucleares/fisiologia , Oxepinas/farmacologia , Doença de Parkinson/tratamento farmacológico , Selegilina/farmacologia , Ubiquitina-Proteína Ligases/fisiologia
9.
Nat Cell Biol ; 7(7): 665-74, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15951807

RESUMO

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) influences cytotoxicity, translocating to the nucleus during apoptosis. Here we report a signalling pathway in which nitric oxide (NO) generation that follows apoptotic stimulation elicits S-nitrosylation of GAPDH, which triggers binding to Siah1 (an E3 ubiquitin ligase), nuclear translocation and apoptosis. S-nitrosylation of GAPDH augments its binding to Siah1, whose nuclear localization signal mediates translocation of GAPDH. GAPDH stabilizes Siah1, facilitating its degradation of nuclear proteins. Activation of macrophages by endotoxin and of neurons by glutamate elicits GAPDH-Siah1 binding, nuclear translocation and apoptosis, which are prevented by NO deletion. The NO-S-nitrosylation-GAPDH-Siah1 cascade may represent an important molecular mechanism of cytotoxicity.


Assuntos
Apoptose/fisiologia , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/fisiologia , Proteínas Nucleares/metabolismo , S-Nitrosotióis/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Células Cultivadas , Cisteína/metabolismo , Citoplasma/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Humanos , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Modelos Biológicos , Mutação , N-Metilaspartato/farmacologia , Proteínas do Tecido Nervoso/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase Tipo I , Óxido Nítrico Sintase Tipo II , Proteínas Nucleares/genética , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Ratos , S-Nitrosoglutationa/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Transfecção , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases
10.
Neuron ; 40(1): 129-37, 2003 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-14527438

RESUMO

Carbon monoxide (CO) is a putative gaseous neurotransmitter that lacks vesicular storage and must be synthesized rapidly following neuronal depolarization. We show that the biosynthetic enzyme for CO, heme oxygenase-2 (HO2), is activated during neuronal stimulation by phosphorylation by CK2 (formerly casein kinase 2). Phorbol ester treatment of hippocampal cultures results in the phosphorylation and activation of HO2 by CK2, implicating protein kinase C (PKC) in CK2 stimulation. Odorant treatment of olfactory receptor neurons augments HO2 phosphorylation and activity as well as cyclic guanosine monophosphate (cGMP) levels, with all of these effects selectively blocked by CK2 inhibitors. Likewise, CO-mediated nonadrenergic, noncholinergic (NANC) relaxation of the internal anal sphincter requires CK2 activity. Our findings provide a molecular mechanism for the rapid neuronal activation of CO biosynthesis, as required for a gaseous neurotransmitter.


Assuntos
Monóxido de Carbono/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transmissão Sináptica/fisiologia , Animais , Células COS , Caseína Quinase II , Chlorocebus aethiops , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Humanos , Camundongos , Neurônios Receptores Olfatórios/efeitos dos fármacos , Neurônios Receptores Olfatórios/enzimologia , Técnicas de Cultura de Órgãos , Ésteres de Forbol/farmacologia , Fosforilação/efeitos dos fármacos , Ratos , Transmissão Sináptica/efeitos dos fármacos
11.
Proc Natl Acad Sci U S A ; 99(5): 3270-5, 2002 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-11854472

RESUMO

Poly(ADP-ribose) polymerase-1 (PARP-1, EC ), a nuclear enzyme activated by DNA strand breaks, physiologically participates in DNA repair. Excessive activation of PARP-1 by cellular insults depletes its substrate beta-nicotinamide adenine dinucleotide and ATP, leading to cell death. PARP-1-deficient (PARP-1-/-) mice are protected from several forms of inflammation. In the present study, we demonstrate in PARP-1-/- glial cells a loss of several stress-activated transcription factors as well as decreased expression of genes for cytokines and cellular adhesion molecules. We also show that augmented expression of some of these genes is independent of PARP-1 catalytic activity. These findings indicate that PARP-1 plays a pivotal role in the initial inflammatory response by modulating transcription of inflammation-linked genes.


Assuntos
Regulação da Expressão Gênica , NF-kappa B/metabolismo , Neuroglia/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Animais , Catálise , Células Cultivadas , Citocinas/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Fatores de Ligação de DNA Eritroide Específicos , Feminino , Fator C1 de Célula Hospedeira , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitógenos/farmacologia , Neuroglia/citologia , Neuroglia/efeitos dos fármacos , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase Tipo II , Fator 1 de Transcrição de Octâmero , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/fisiologia , Fator de Transcrição STAT1 , Fator de Transcrição Sp1/metabolismo , Estresse Fisiológico , Transativadores/metabolismo , Fator de Transcrição AP-1/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...