Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 141(22): 8727-8731, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31095391

RESUMO

When conjugate molecules are self-assembled on the surface of semiconductors, emergent properties resulting from the electronic coupling between the conjugate moieties are of importance in the interfacial electron-transfer dynamics for photoelectrochemical and optoelectronics devices. In this work, we investigate the self-assembly of triphenylamine-oligothiophene-perylenemonoimide (PMI) molecules, denoted as BH4, on metal oxide surfaces via UV-vis absorption, photoluminescence, and transient near-infrared absorption spectroscopies and molecular dynamics simulations, and we report the excimer formation due to the π-π interaction of the PMI units between the neighboring dye molecules. To our best knowledge, this is the first experimental observation of intermolecular excimer formation when conjugate donor-acceptor molecules form a self-assembled monolayer. In addition, a long-lived (4.3 µs) intermolecular charge separation is observed, and a new excimer-mediated intermolecular charger-transfer mechanism is proposed. This work demonstrates that, through the design of dye molecules, the excited complexes or aggregates can provide a pathway to slow down the recombination rate in photoelectrodes that utilize donor-acceptor dyad molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...