Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38045320

RESUMO

Brain size robustly differs between sexes. However, the consequences of this anatomical dimorphism on sex differences in intrinsic brain function remain unclear. We investigated the extent to which sex differences in intrinsic cortical functional organization may be explained by differences in cortical morphometry, namely brain size, microstructure, and the geodesic distances of connectivity profiles. For this, we computed a low dimensional representation of functional cortical organization, the sensory-association axis, and identified widespread sex differences. Contrary to our expectations, observed sex differences in functional organization were not fundamentally associated with differences in brain size, microstructural organization, or geodesic distances, despite these morphometric properties being per se associated with functional organization and differing between sexes. Instead, functional sex differences in the sensory-association axis were associated with differences in functional connectivity profiles and network topology. Collectively, our findings suggest that sex differences in functional cortical organization extend beyond sex differences in cortical morphometry.

2.
PLoS Biol ; 21(11): e3002365, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37943873

RESUMO

The human isocortex consists of tangentially organized layers with unique cytoarchitectural properties. These layers show spatial variations in thickness and cytoarchitecture across the neocortex, which is thought to support function through enabling targeted corticocortical connections. Here, leveraging maps of the 6 cortical layers based on 3D human brain histology, we aimed to quantitatively characterize the systematic covariation of laminar structure in the cortex and its functional consequences. After correcting for the effect of cortical curvature, we identified a spatial pattern of changes in laminar thickness covariance from lateral frontal to posterior occipital regions, which differentiated the dominance of infra- versus supragranular layer thickness. Corresponding to the laminar regularities of cortical connections along cortical hierarchy, the infragranular-dominant pattern of laminar thickness was associated with higher hierarchical positions of regions, mapped based on resting-state effective connectivity in humans and tract-tracing of structural connections in macaques. Moreover, we show that regions with similar laminar thickness patterns have a higher likelihood of structural connections and strength of functional connections. In sum, here we characterize the organization of laminar thickness in the human isocortex and its association with cortico-cortical connectivity, illustrating how laminar organization may provide a foundational principle of cortical function.


Assuntos
Neocórtex , Animais , Humanos , Macaca , Córtex Cerebral
3.
bioRxiv ; 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37292916

RESUMO

The ability to stably maintain visual information over brief delays is central to cognitive functioning. One possible way to achieve robust working memory maintenance is by having multiple concurrent mnemonic representations across multiple cortical loci. For example, early visual cortex might contribute to storage by representing information in a "sensory-like" format, while intraparietal sulcus uses a format transformed away from sensory driven responses. As an explicit test of mnemonic code transformations along the visual hierarchy, we quantitatively modeled the progression of veridical-to-categorical orientation representations in human participants. Participants directly viewed, or held in mind, an oriented grating pattern, and the similarity between fMRI activation patterns for different orientations was calculated throughout retinotopic cortex. During direct perception, similarity was clustered around cardinal orientations, while during working memory the obliques were represented more similarly. We modeled these similarity patterns based on the known distribution of orientation information in the natural world: The "veridical" model uses an efficient coding framework to capture hypothesized representations during visual perception. The "categorical" model assumes that different "psychological distances" between orientations result in orientation categorization relative to cardinal axes. During direct perception, the veridical model explained the data well in early visual areas, while the categorical model did worse. During working memory, the veridical model only explained some of the data, while the categorical model gradually gained explanatory power for increasingly anterior retinotopic regions. These findings suggest that directly viewed images are represented veridically, but once visual information is no longer tethered to the sensory world, there is a gradual progression to more categorical mnemonic formats along the visual hierarchy.

4.
Neuroimage ; 264: 119656, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183945

RESUMO

The hippocampus is a uniquely infolded allocortical structure in the medial temporal lobe that consists of the microstructurally and functionally distinct subregions: subiculum, cornu ammonis, and dentate gyrus. The hippocampus is a remarkably plastic region that is implicated in learning and memory. At the same time it has been shown that hippocampal subregion volumes are heritable, and that genetic expression varies along a posterior to anterior axis. Here, we studied how a heritable, stable, hippocampal organisation may support its flexible function in healthy adults. Leveraging the twin set-up of the Human Connectome Project with multimodal neuroimaging, we observed that the functional connectivity between hippocampus and cortex was heritable and that microstructure of the hippocampus genetically correlated with cortical microstructure. Moreover, both functional and microstructural organisation could be consistently captured by anterior-to-posterior and medial-to-lateral axes across individuals. However, heritability of functional, relative to microstructural, organisation was found reduced, suggesting individual variation in functional organisation may be explained by experience-driven factors. Last, we demonstrate that structure and function couple along an inherited macroscale organisation, suggesting an interplay of stability and plasticity within the hippocampus. Our study provides new insights on the heritability of the hippocampal of the structure and function within the hippocampal organisation.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Adulto , Humanos , Imageamento por Ressonância Magnética/métodos , Hipocampo/diagnóstico por imagem , Lobo Temporal
5.
Commun Biol ; 5(1): 1024, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36168040

RESUMO

It is increasingly recognized that multiple psychiatric conditions are underpinned by shared neural pathways, affecting similar brain systems. Here, we carried out a multiscale neural contextualization of shared alterations of cortical morphology across six major psychiatric conditions (autism spectrum disorder, attention deficit/hyperactivity disorder, major depression disorder, obsessive-compulsive disorder, bipolar disorder, and schizophrenia). Our framework cross-referenced shared morphological anomalies with respect to cortical myeloarchitecture and cytoarchitecture, as well as connectome and neurotransmitter organization. Pooling disease-related effects on MRI-based cortical thickness measures across six ENIGMA working groups, including a total of 28,546 participants (12,876 patients and 15,670 controls), we identified a cortex-wide dimension of morphological changes that described a sensory-fugal pattern, with paralimbic regions showing the most consistent alterations across conditions. The shared disease dimension was closely related to cortical gradients of microstructure as well as neurotransmitter axes, specifically cortex-wide variations in serotonin and dopamine. Multiple sensitivity analyses confirmed robustness with respect to slight variations in analytical choices. Our findings embed shared effects of common psychiatric conditions on brain structure in multiple scales of brain organization, and may provide insights into neural mechanisms of transdiagnostic vulnerability.


Assuntos
Transtorno do Espectro Autista , Conectoma , Conectoma/métodos , Dopamina , Humanos , Vias Neurais , Serotonina
7.
Schizophr Bull ; 48(3): 551-562, 2022 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-35137221

RESUMO

INTRODUCTION: Illuminating neurobiological mechanisms underlying the protective effect of recently discovered common genetic resilience variants for schizophrenia is crucial for more effective prevention efforts. Current models implicate adaptive neuroplastic changes in the visual system and their pro-cognitive effects as a schizophrenia resilience mechanism. We investigated whether common genetic resilience variants might affect brain structure in similar neural circuits. METHOD: Using structural magnetic resonance imaging, we measured the impact of an established schizophrenia polygenic resilience score (PRSResilience) on cortical volume, thickness, and surface area in 101 healthy subjects and in a replication sample of 33 224 healthy subjects (UK Biobank). FINDING: We observed a significant positive whole-brain correlation between PRSResilience and cortical volume in the right fusiform gyrus (FFG) (r = 0.35; P = .0004). Post-hoc analyses in this cluster revealed an impact of PRSResilience on cortical surface area. The replication sample showed a positive correlation between PRSResilience and global cortical volume and surface area in the left FFG. CONCLUSION: Our findings represent the first evidence of a neurobiological correlate of a genetic resilience factor for schizophrenia. They support the view that schizophrenia resilience emerges from strengthening neural circuits in the ventral visual pathway and an increased capacity for the disambiguation of social and nonsocial visual information. This may aid psychosocial functioning, ameliorate the detrimental effects of subtle perceptual and cognitive disturbances in at-risk individuals, and facilitate coping with the cognitive and psychosocial consequences of stressors. Our results thus provide a novel link between visual cognition, the vulnerability-stress concept, and schizophrenia resilience models.


Assuntos
Esquizofrenia , Encéfalo/metabolismo , Humanos , Imageamento por Ressonância Magnética , Herança Multifatorial , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Esquizofrenia/metabolismo , Vias Visuais/diagnóstico por imagem , Vias Visuais/patologia
8.
Cereb Cortex ; 32(8): 1625-1636, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34519351

RESUMO

Adult gyrification provides a window into coordinated early neurodevelopment when disruptions predispose individuals to psychiatric illness. We hypothesized that the echoes of such disruptions should be observed within structural gyrification networks in early psychiatric illness that would demonstrate associations with developmentally relevant variables rather than specific psychiatric symptoms. We employed a new data-driven method (Orthogonal Projective Non-Negative Matrix Factorization) to delineate novel gyrification-based networks of structural covariance in 308 healthy controls. Gyrification within the networks was then compared to 713 patients with recent onset psychosis or depression, and at clinical high-risk. Associations with diagnosis, symptoms, cognition, and functioning were investigated using linear models. Results demonstrated 18 novel gyrification networks in controls as verified by internal and external validation. Gyrification was reduced in patients in temporal-insular, lateral occipital, and lateral fronto-parietal networks (pFDR < 0.01) and was not moderated by illness group. Higher gyrification was associated with better cognitive performance and lifetime role functioning, but not with symptoms. The findings demonstrated that gyrification can be parsed into novel brain networks that highlight generalized illness effects linked to developmental vulnerability. When combined, our study widens the window into the etiology of psychiatric risk and its expression in adulthood.


Assuntos
Imageamento por Ressonância Magnética , Transtornos Psicóticos , Adulto , Encéfalo/diagnóstico por imagem , Córtex Cerebral , Humanos , Imageamento por Ressonância Magnética/métodos , Transtornos Psicóticos/diagnóstico por imagem , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...